Cardiovascular illnesses have surpassed disease as the leading cause of death in industrialized, emerging, and underprivileged countries in recent decades. The mortality rate can be lowered through early detection and effective care of cardiac diseases. However, reliable detection of heart disorders in all conditions and serving doctors with 24-hour medical consultations are not possible since they require more intelligence, time, and talent to train the computer for a specific duty. Artificial intelligence and machine learning algorithms may have a substantial impact on the lives of those who are afflicted with chronic diseases. In this work, we used artificial intelligence to create a hybrid model for the prediction of cardiac disease and flags for prevention. The goal of this research was to develop a prediction model that can identify and characterize a patient's illness. We used data of 68975 patients from the University of California, Irvine's repository and trained several algorithms for CVD illness prediction. In our simulation maximum classifiers have achieved the greatest accuracy, which is a huge accomplishment for our research team. Our proposed hybrid ML algorithm framework improved CVD prediction performance when compared to previously offered prediction models. The proposed methods are decision tree and random forest models, which have a 99.98% accuracy for training, followed by support vector machine, which has a 99.30% accuracy followed by other classifiers which yield higher results in comparison. Pre-existing CVD history was considered the most important factor determining the prediction model's accuracy. Our findings reveal that our CVD prediction model based on machine learning techniques developed for health screening datasets is simple to apply and more accurate. Our proposed classifiers have the best accuracy rate.
In healthcare settings, particularly in areas such as operating rooms and intensive care units, there is a need for a dynamically controlled temperature environment that can adapt to the changing needs of both patients and healthcare workers. This is due to the fact that the desired temperature can vary depending on the condition of the patient and the specific requirements of surgical and treatment procedures. To address this need, our objective is to develop a tool for predicting the electric power needed to maintain a desired temperature in these critical care areas. Previous research has employed artificial learning algorithms and mathematical equations to predict electric power for various types and sizes of buildings, with promising results. However, our study focuses specifically on critical care areas within hospitals and utilizes fluctuating temperature set-points to predict power demand using historical weather data and Building Management System (BMS) data. We employed both Multi-Layer Artificial Neural Network (ML-ANN) and Long short-term memory (LSTM) models for this purpose and found that ML-ANN outperformed LSTM. The results showed that the ML-ANN model performed better than the LSTM model, with a testing accuracy of 96% compared to 78% for the LSTM model. This indicates that the ML-ANN model was more accurate in predicting the power consumption for the desired temperature in the operating room.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.