Allicin (diallylthiosulfinate) is a defense molecule produced by cellular contents of garlic (Allium sativum L.). On tissue damage, the non-proteinogenic amino acid alliin (S-allylcysteine sulfoxide) is converted to allicin in an enzyme-mediated process catalysed by alliinase. Allicin is hydrophobic in nature, can efficiently cross the cellular membranes and behaves as a reactive sulfur species (RSS) inside the cells. It is physiologically active molecule with the ability to oxidise the thiol groups of glutathione and between cysteine residues in proteins. Allicin has shown anticancer, antimicrobial, antioxidant properties and also serves as an efficient therapeutic agent against cardiovascular diseases. In this context, the present review describes allicin as an antioxidant, and neuroprotective molecule that can ameliorate the cognitive abilities in case of neurodegenerative and neuropsychological disorders. As an antioxidant, allicin fights the reactive oxygen species (ROS) by downregulation of NOX (NADPH oxidizing) enzymes, it can directly interact to reduce the cellular levels of different types of ROS produced by a variety of peroxidases. Most of the neuroprotective actions of allicin are mediated via redox-dependent pathways. Allicin inhibits neuroinflammation by suppressing the ROS production, inhibition of TLR4/MyD88/NF-κB, P38 and JNK pathways. As an inhibitor of cholinesterase and (AChE) and butyrylcholinesterase (BuChE) it can be applied to manage the Alzheimer’s disease, helps to maintain the balance of neurotransmitters in case of autism spectrum disorder (ASD) and attention deficit hyperactive syndrome (ADHD). In case of acute traumatic spinal cord injury (SCI) allicin protects neuron damage by regulating inflammation, apoptosis and promoting the expression levels of Nrf2 (nuclear factor erythroid 2-related factor 2). Metal induced neurodegeneration can also be attenuated and cognitive abilities of patients suffering from neurological diseases can be ameliorates by allicin administration.
The current global outbreak of monkeypox (MPX) disease, caused by Monkeypox virus (MPXV), has resulted in 16 thousand infection cases, five deaths, and has been declared a global health emergency of international concern by the World Health Organization. Given current challenges in the safety of existing vaccines, a vaccine to prevent MPX infection and/or onset of symptoms would significantly advance disease management. In this context, a multi-epitope-based vaccine could be a well-suited approach. Herein, we searched a publicly accessible database (Virus Pathogen Database and Analysis Resource) for MPXV immune epitopes from various antigens. We prioritized a group of epitopes (10 CD8+ T cells and four B-cell epitopes) using a computer-aided technique based on desirable immunological and physicochemical properties, sequence conservation criteria, and non-human homology. Three multi-epitope vaccines were constructed (MPXV-1–3) by fusing finalized epitopes with the aid of appropriate linkers and adjuvant (beta-defensin 3, 50S ribosomal protein L7/L12, and Heparin-binding hemagglutinin). Codon optimization and in silico cloning in the pET28a (+) expression vector ensure the optimal expression of each construct in the Escherichia Coli system. Two and three-dimensional structures of the constructed vaccines were predicted and refined. The optimal binding mode of the construct with immune receptors [Toll-like receptors (TLR2, TLR3, and TLR4)] was explored by molecular docking, which revealed high docking energies of MPXV-1–TLR3 (–99.09 kcal/mol), MPXV-2–TLR3 (–98.68 kcal/mol), and MPXV-3–TLR2 (–85.22 kcal/mol). Conformational stability and energetically favourable binding of the vaccine-TLR2/3 complexes were assessed by performing molecular dynamics simulations and free energy calculations (Molecular Mechanics/Generalized Born Surface Area method). In silico immune simulation suggested that innate, adaptive, and humoral responses will be elicited upon administration of such potent multi-epitope vaccine constructs. The vaccine constructs are antigenic, non-allergen, non-toxic, soluble, topographically exposed, and possess favourable physicochemical characteristics. These results may help experimental vaccinologists design a potent MPX vaccine.
Nigella sativa L. is an annual underutilized crop of enormous significance, it contains more than 100 bioactive constituents having both pharmaceutical and industrial applications. Nigella sativa L. germplasm consisting of 32 genotypes was quantified for palmitic acid, stearic acid, oleic acid, linoleic and linolenic acid and results obtained varied in percentage. Lipid extracted by chloroform methanol 2:1 (24–37 %) was higher compared to n‐hexane (18–35 %) and chloroform methanol 1:3 (18–34 %). Extraction with solvent chloroform methanol 2:1 yielded a higher quantity of oil contents, hence recommended. The polyunsaturated fatty acids were higher than monounsaturated fatty acids. Stearic and palmitic acids were positively correlated as were stearic and linoleic acids. It is inferred that breeding for increased stearic acid, linolenic acid and reduced palmitic acid can be achieved through modern breeding methods. The genotypes rich in oil and oleic‐linoleic acid, viz., Pk‐020545, Pk‐020576, Pk‐020609, Pk‐020620, Pk‐020654, Pk‐020699, Pk‐020720, Pk‐020780, Pk‐020874 and Pk‐020878, have been suggested for crop improvement programs and could augment the supply of edible oil as well as a biofuel substitute with large scale cultivation.
Salmonella enterica serovar Typhimurium is a foodborne pathogen causing occasional outbreaks of enteric infections in humans. Salmonella has one of the largest pools of temperate phages in its genome that possess evolutionary significance for pathogen. In this study, we characterized a novel temperate phage Salmonella phage BIS20 (BIS20) with unique tail fiber genes. It belongs to the subfamily Peduovirinae genus Eganvirus and infects Salmonella Typhimurium strain (SE-BS17; Acc. NO MZ503545) of poultry origin. Phage BIS20 was viable only at biological pH and temperature ranges (pH7 and 37 °C). Despite being temperate BIS20 significantly slowed down the growth of host strain for 24 h as compared to control (P < 0.009). Phage BIS20 features 29,477-base pair (bp) linear DNA genome with 53% GC content and encodes for 37 putative ORFs. These ORFs have mosaic arrangement as indicated by its ORF similarity to various phages and prophages in NCBI. Genome analysis indicates its similarity to Salmonella enterica serovar Senftenberg prophage (SEStP) sequence (Nucleotide similarity 87.7%) and Escherichia virus 186 (~ 82.4% nucleotide similarity). Capsid genes were conserved however those associated with tail fiber formation and assembly were unique to all members of genus Eganvirus. We found strong evidence of recombination hotspot in tail fiber gene. Our study identifies BIS20 as a new species of genus Eganvirus temperate phages as its maximum nucleotide similarity is 82.4% with any phage in NCBI. Our findings may contribute to understanding of origin of new temperate phages.
Salmonella Typhimurium, a foodborne pathogen, is a major concern for food safety. Its MDR serovars of animal origin pose a serious threat to the human population. Phage therapy can be an alternative for the treatment of such MDR Salmonella serovars. In this study, we report on detailed genome analyses of a novel Salmonella phage (Salmonella-Phage-SSBI34) and evaluate its therapeutic potential. The phage was evaluated for latent time, burst size, host range, and bacterial growth reduction in liquid cultures. The phage stability was examined at various pH levels and temperatures. The genome analysis (141.095 Kb) indicated that its nucleotide sequence is novel, as it exhibited only 1–7% DNA coverage. The phage genome features 44% GC content, and 234 putative open reading frames were predicted. The genome was predicted to encode for 28 structural proteins and 40 enzymes related to nucleotide metabolism, DNA modification, and protein synthesis. Further, the genome features 11 tRNA genes for 10 different amino acids, indicating alternate codon usage, and hosts a unique hydrolase for bacterial lysis. This study provides new insights into the subfamily Vequintavirinae, of which SSBI34 may represent a new genus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.