SUMMARYThe merits of transport equation-based models are investigated by adopting an enhanced pressure-based method for turbulent cavitating ows. An analysis of the mass and normal-momentum conservation at a liquid-vapour interface is conducted in the context of homogeneous equilibrium ow theory, resulting in a new interfacial dynamics-based cavitation model. The model o ers direct interpretation of the empirical parameters in the existing transport-equation-based models adopted in the literature. This and three existing cavitation models are evaluated for ows around an axisymmetric cylindrical body and a planar hydrofoil, and through a convergent-divergent nozzle. Although all models considered provide qualitatively comparable wall pressure distributions in agreement with the experimental data, quantitative di erences are observed in the closure region of the cavity, due to di erent compressibility characteristics of each cavitation model. In particular, the baroclinic e ect of the vorticity transport equation plays a noticeable role in the closure region of the cavity, and contributes to the highest level of turbulent kinetic energy there.
Modern graphics processing units (GPUs) with many-core architectures have emerged as general-purpose parallel computing platforms that can accelerate simulation science applications tremendously. While multi-GPU workstations with several TeraFLOPS of peak computing power are available to accelerate computational problems, larger problems require even more resources. Conventional clusters of central processing units (CPU) are now being augmented with multiple GPUs in each compute-node to tackle large problems. The heterogeneous architecture of a multi-GPU cluster with a deep memory hierarchy creates unique challenges in developing scalable and efficient simulation codes. In this study, we pursue mixed MPI-CUDA implementations and investigate three strategies to probe the efficiency and scalability of incompressible flow computations on the Lincoln Tesla cluster at the National Center for Supercomputing Applications (NCSA). We exploit some of the advanced features of MPI and CUDA programming to overlap both GPU data transfer and MPI communications with computations on the GPU. We sustain approximately 2.4 TeraFLOPS on the 64 nodes of the NCSA Lincoln Tesla cluster using 128 GPUs with a total of 30,720 processing elements. Our results demonstrate that multi-GPU clusters can substantially accelerate computational fluid dynamics (CFD) simulations.
Graphics processor units (GPU) that are traditionally designed for graphics rendering have emerged as massively-parallel "co-processors" to the central processing unit (CPU). Small-footprint desktop supercomputers with hundreds of cores that can deliver teraflops peak performance at the price of conventional workstations have been realized. A computational fluid dynamics (CFD) simulation capability with rapid computational turnaround time has the potential to transform engineering analysis and design optimization procedures. We describe the implementation of a Navier-Stokes solver for incompressible fluid flow using desktop platforms equipped with multi-GPUs. Specifically, NVIDIA's Compute Unified Device Architecture (CUDA) programming model is used to implement the discretized form of the governing equations. The projection algorithm to solve the incompressible fluid flow equations is divided into distinct CUDA kernels, and a unique implementation that exploits the memory hierarchy of the CUDA programming model is suggested. Using a quad-GPU platform, we observe two orders of magnitude speedup relative to a serial CPU implementation. Our results demonstrate that multi-GPU desktops can serve as a cost-effective small-footprint parallel computing platform to accelerate CFD simulations substantially.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.