Alzheimer’s Disease (AD) is the most prevailing type of dementia. The prevalence of AD is estimated to be around 5% after 65 years old and is staggering 30% for more than 85 years old in developed countries. AD destroys brain cells causing people to lose their memory, mental functions and ability to continue daily activities. The findings of this study are likely to aid specialists in their decision-making process by using patients’ Magnetic Resonance Imaging (MRI) to distinguish patients with AD from Normal Control (NC). Performance evolution was applied to 346 Magnetic Resonance images from the Alzheimer's Neuroimaging Initiative (ADNI) collection. The Deep Belief Network (DBN) classifier was used to fulfill classification function. Weights were used to test the proposed method's recognition capacity, and the network was trained with a sample training set. As a result, this study offeres a new method for identifying Alzheimer's disease utilizing automated categorization. In tests, it performed admirably With 98.46% accuracy achieved for AD and NC studied classes when combining Gray Level Co-occurrence Matrix (GLCM) features with a DBN.
Steganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file. In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus, the exact way by which the network will hide the information is unable to be known to anyone who does not have the weights. The second goal is to increase hiding capacity, which has been achieved by using CNN as a strategy to make decisions to determine the best areas that are redundant and, as a result, gain more size to be hidden. Furthermore, In the proposed model, CNN is concurrently trained to generate the revealing and hiding processes, and it is designed to work as a pair mainly. This model has a good strategy for the patterns of images, which assists to make decisions to determine which is the parts of the cover image should be redundant, as well as more pixels are hidden there. The CNN implementation can be done by using Keras, along with tensor flow backend. In addition, random RGB images from the "ImageNet dataset" have been used for training the proposed model (About 45000 images of size (256x256)). The proposed model has been trained by CNN using random images taken from the database of ImageNet and can work on images taken from a wide range of sources. By saving space on an image by removing redundant areas, the quantity of hidden data can be raised (improve capacity). Since the weights and model architecture are randomized, the actual method in which the network will hide the data can't be known to anyone who does not have the weights. Furthermore, additional block-shuffling is incorporated as an encryption method to improved security; also, the image enhancement methods are used to improving the output quality. From results, the proposed method has achieved high-security level, high embedding capacity. In addition, the result approves that the system achieves good results in visibility and attacks, in which the proposed method successfully tricks observer and the steganalysis program.
Cryptography and steganography are significant tools for data security. Hybrid the cryptography with Steganography can give more security by taking advantage of each technique. This work has proposed a method for improving the crypto-stego method by utilizing the proposed dictionary method to modified ciphertext then hiding modified encrypt ciphertext in the text by used the proposed modified space method. For cryptography, we have been utilized an advanced encryption standard (AES) to the encrypted message, The AES algorithm is utilized a 128bit Block Size and 256bit key size. The ciphertext characters is then replaced by the characters identified by dictionary list. The dictionary is time-dependent, where each of the equivalent words will shifting based on the time-shift equation. The modified ciphertext is then embedded into a cover text so that the attacker cannot separate them by applying cryptanalysis. The “Modifying Spaces†method used “Spaces†to build a steganography tool that hide the secret message. The experimental results show that the proposed method has achieved high-security level when combined cryptography and steganography in such way that the ciphertext is changed to another value by a used dictionary with time sequence that makes cryptanalysis test failed to guess and identify the algorithm that been used for encryption. The stego. test shows the proposed method achieved good results in term of capacity and visibility which is approved it hard to notice. The tests also approved that the proposed methods run fast with a less computational requirement.
Malicious software (malware) performs a malicious function that compromising a computer system's security. Many methods have been developed to improve the security of the computer system resources, among them the use of firewall, encryption, and Intrusion Detection System (IDS). IDS can detect newly unrecognized attack attempt and raising an early alarm to inform the system about this suspicious intrusion attempt. This paper proposed a hybrid IDS for detection intrusion, especially malware, with considering network packet and host features. The hybrid IDS designed using Data Mining (DM) classification methods that for its ability to detect new, previously unseen intrusions accurately and automatically. It uses both anomaly and misuse detection techniques using two DM classifiers (Interactive Dichotomizer 3 (ID3) classifier and Naïve Bayesian (NB) Classifier) to verify the validity of the proposed system in term of accuracy rate. A proposed HybD dataset used in training and testing the hybrid IDS. Feature selection is used to consider the intrinsic features in classification decision, this accomplished by using three different measures: Association rules (AR) method, ReliefF measure, and Gain Ratio (GR) measure. NB classifier with AR method given the most accurate classification results (99%) with false positive (FP) rate (0%) and false negative (FN) rate (1%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.