We explore an exchangeably weighted bootstrap of the general function-indexed empirical U-processes in the Markov setting, which is a natural higher-order generalization of the weighted bootstrap empirical processes. As a result of our findings, a considerable variety of bootstrap resampling strategies arise. This paper aims to provide theoretical justifications for the exchangeably weighted bootstrap consistency in the Markov setup. General structural conditions on the classes of functions (possibly unbounded) and the underlying distributions are required to establish our results. This paper provides the first general theoretical study of the bootstrap of the empirical U-processes in the Markov setting. Potential applications include the symmetry test, Kendall’s tau and the test of independence.
Stute presented the so-called conditional U-statistics generalizing the Nadaraya–Watson estimates of the regression function. Stute demonstrated their pointwise consistency and the asymptotic normality. In this paper, we extend the results to a more abstract setting. We develop an asymptotic theory of conditional U-statistics for locally stationary random fields {Xs,An:sinRn} observed at irregularly spaced locations in Rn=[0,An]d as a subset of Rd. We employ a stochastic sampling scheme that may create irregularly spaced sampling sites in a flexible manner and includes both pure and mixed increasing domain frameworks. We specifically examine the rate of the strong uniform convergence and the weak convergence of conditional U-processes when the explicative variable is functional. We examine the weak convergence where the class of functions is either bounded or unbounded and satisfies specific moment conditions. These results are achieved under somewhat general structural conditions pertaining to the classes of functions and the underlying models. The theoretical results developed in this paper are (or will be) essential building blocks for several future breakthroughs in functional data analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.