4-1BB (CD137) is a costimulatory molecule transiently expressed on the T-cell surface after TCR engagement, whereas its ligand 4-1BBL can be found on professional antigen-presenting cells, but more importantly, also on tumor cells. As the role of the 4-1BB/4-1BBL pathway has emerged central to CD81 T-cell responses and survival, we sought to test its relevance in the context of genetically modified human T cells. To that end, T cells purified from healthy donors and from vaccinatedmelanoma patients were transduced to express high levels of constitutive 4-1BB. 4-1BB-transduced T cells were cocultured with melanoma tumor lines and exhibited enhanced cytokine secretion, upregulation of activation markers as well as increased cytotoxicity in a chick-chorioallantoic membrane model of human melanoma tumors. In addition, these cells expanded and proliferated at a higher rate, expressed heightened levels of the antiapoptotic molecule Bcl XL and were also relatively insensitive to immunosuppression mediated by transforming growth factor-b, compared to control cells. We also show that 4-1BBL expression on the target cell is essential to 4-1BB-mediated functional improvement. Overall, we conclude that the modification of human T cells with 4-1BB yields enhanced antitumor function which may have important applications in therapies based on the genetic modification of patient lymphocytes.Costimulation actively shapes T-lymphocyte response as it can prevent the cells from entering a state of unresponsiveness or anergy. Costimulatory molecules are divided into two important families: the B7/CD28 and the tumor necrosis factors-receptor family.
T-cells are central players in the immune response against both pathogens and cancer. Their specificity is solely dictated by the T-cell receptor (TCR) they clonally express. As such, the genetic modification of T lymphocytes using pathogen- or cancer-specific TCRs represents an appealing strategy to generate a desired immune response from peripheral blood lymphocytes. Moreover, notable objective clinical responses were observed in terminally ill cancer patients treated with TCR-gene modified cells in several clinical trials conducted recently. Nevertheless, several key aspects of this approach are the object of intensive research aimed at improving the reliability and efficacy of this strategy. Herein, we will survey recent studies in the field of TCR-gene transfer dealing with the improvement of this approach and its application for the treatment of malignant, autoimmune, and infectious diseases.
Background: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-death due to early metastatic spread, in many cases primarily to the brain. Organ-specific pattern of spread of disease might be driven by the activity of a specific signaling pathway within the primary tumors. We aimed to identify an expression signature of genes and the relevant signaling associated with the development of brain metastasis (BM) after surgical resection of NSCLC.Methods: Rapidly frozen NSCLC surgical specimens were procured from tumor banks. RNA was extracted and analyzed by RNA-sequencing (Illumina HiSeq 2500). Clinical parameters and gene expression were examined for differentiating between patients with BM, patients with metastases to sites other than brain, and patients who did not develop metastatic disease at a clinically significant follow up. Principal component analysis and pathway enrichments studies were done.Results: A total of 91 patients were included in this study, 32 of which developed BM. Stage of disease at diagnosis (P=0.004) and level of differentiation (P=0.007) were significantly different between BM and control group. We identified a set of 22 genes which correlated specifically with BM, and not with metastasis to other sites. This set achieved 93.4% accuracy (95% CI: 86.2-97.5%), 96.6% specificity and 87.5% sensitivity of correctly identifying BM patients in a leave-one-out internal validation analysis. The oxidative phosphorylation pathway was strongly correlated with BM risk.Conclusions: Expression level of a small set of genes from primary tumors was found to predict BM development, distinctly from metastasis to other organs. These genes and the correlated oxidative phosphorylation pathway require further validation as potentially clinically useful predictors of BM and possibly as novel therapeutic targets for BM prevention.
Tumor-host interactions play a major role in malignancies' initiation and progression. We have reported in the past that tumor cells attenuate genotoxic stress-induced p53 activation in neighboring stromal cells.Herein we aim to further elucidate cancer cells' impact on signaling within lung cancer stroma. Primary cancer-associated fibroblasts were grown from resected human lung tumors. Lung cancer lines as well as fresh cultures of resected human lung cancers were used to produce conditioned medium (CM) or cocultured with stromal cells. Invasiveness of cancer cells was evaluated by transwell assays, and in vivo tumor growth was tested in Athymic nude mice. We found CM of a large variety of cancer cell lines as well as exvivo cultured lung cancers to rapidly induce protein levels of stromal-MDM2. CM of non-trasnformed cells had no such effect. Mdm2 induction occurred through enhanced translation, was mTORC1-dependent, and correlated with activation of AKT and p70 S6 Kinase. AKT or MDM2 knockdown in fibroblasts reduced the invasion of neighboring cancer cells, independently of stromal-p53. MDM2 overexpression in fibroblasts enhanced cancer cells' invasion and growth of inoculated tumors in mice. Our results indicate that stromal-MDM2 participates in a p53-independent cancer-host feedback mechanism. Soluble cancer-originated signals induce enhanced translation of stromal-MDM2 through AKT/mTORC1 signaling, which in turn enhances the neighboring cancer cells' invasion ability. The role of these tumor-host interactions needs to be further explored. Implications: We uncovered a novel tumor-stroma signaling loop, which is a potentially new therapeutic target in lung cancer and possibly in additional types of cancer. Cancer-CM Cancer CAFs [control or shp53] MDM2 translation p-AKT/p-mTOR p-p70S6K Tumor growth/invasion on May 5, 2021.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.