We initiate the study of computing (near-)optimal contracts in succinctly representable principal-agent settings. Here optimality means maximizing the principal's expected payoff over all incentive-compatible contracts-known in economics as "second-best" solutions. We also study a natural relaxation to approximately incentive-compatible contracts.We focus on principal-agent settings with succinctly described (and exponentially large) outcome spaces. We show that the computational complexity of computing a near-optimal contract depends fundamentally on the number of agent actions. For settings with a constant number of actions, we present a fully polynomial-time approximation scheme (FPTAS) for the separation oracle of the dual of the problem of minimizing the principal's payment to the agent, and use this subroutine to efficiently compute a δ-incentive-compatible (δ-IC) contract whose expected payoff matches or surpasses that of the optimal IC contract.With an arbitrary number of actions, we prove that the problem is hard to approximate within any constant c. This inapproximability result holds even for δ-IC contracts where δ is a sufficiently rapidly-decaying function of c. On the positive side, we show that simple linear δ-IC contracts with constant δ are sufficient to achieve a constant-factor approximation of the "firstbest" (full-welfare-extracting) solution, and that such a contract can be computed in polynomial time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.