ß-thalassemia intermedia is a disorder characterized by ineffective erythropoiesis (IE), anemia, splenomegaly and systemic iron overload. Novel approaches are being explored based on the modulation of pathways that reduce iron absorption (i.e. using hepcidin activators like Tmprss6-antisense oligonucleotides (ASO)) or increase erythropoiesis (by erythropoietin (EPO) administration or by modulating the ability of transferrin receptor 2 (Tfr2) to control red blood cell (RBC) synthesis). Targeting Tmprss6 mRNA by Tmprss6-ASO was proven to be effective in improving the IE and splenomegaly by inducing iron restriction. However we postulated that combinatorial strategies might be superior to single therapies. Here we combined Tmprss6-ASO with EPO administration or removal of a single Tfr2 allele in the bone marrow of animals affected by ß-thalassemia intermedia (Hbbth3/+). EPO administration alone or removal of a single Tfr2 allele increased hemoglobin levels and RBCs. However, EPO or Tfr2 single allele deletion alone, respectively, exacerbated or did not improve the splenomegaly in ß-thalassemic mice. To overcome this issue, we postulated that some level of iron restriction (by targeting Tmprss6) would improve the splenomegaly while preserving the beneficial effects on RBC production mediated by EPO or Tfr2 deletion. While administration of Tmprss6-ASO alone improved the anemia, combination of Tmprss6-ASO+EPO or Tmprss6-ASO+Tfr2 single allele deletion showed significantly higher hemoglobin levels as well as reduction of splenomegaly. In conclusion, our results clearly indicate that these combinatorial approaches are superior to single treatments in ameliorating the IE and anemia in ß-thalassemia and could provide guidance to translate some of these approaches into viable therapies.
In recent years antibodies, whether generated by traditional hybridoma technology or by recombinant DNA strategies, have evolved from Paul Ehrlich's 'magic bullets' to a modern age 'guided missile'. In the recent years of immunologic research, we are witnessing development in the fields of antigen screening and protein engineering in order to create specific anticancer remedies. The developments in the field of recombinant DNA, protein engineering and cancer biology have let us gain insight into many cancer-related mechanisms. Moreover, novel techniques have facilitated tools allowing unique distinction between malignantly transformed cells, and regular ones. This understanding has paved the way for the rational design of a new age of pharmaceuticals: monoclonal antibodies and their fragments. Antibodies can select antigens on both a specific and a high-affinity account, and further implementation of these qualities is used to target cancer cells by specifically identifying exogenous antigens of cancer cell populations. The structure of the antibody provides plasticity resonating from its functional sites. This review will screen some of the many novel antibodies and antibody-based approaches that are being currently developed for clinical applications as the new generation of anticancer agents.
Many coronavirus disease 2019 (COVID-19) patients demonstrate lethal respiratory complications caused by cytokine release syndrome (CRS). Multiple cytokines have been implicated in CRS, but levels of tumor necrosis factor superfamily 14 (TNFSF14) (LIGHT) have not been previously measured in this setting. In this study, we observed significantly elevated serum LIGHT levels in hospitalized COVID-19 patients compared to healthy age- and gender-matched control patients. The assay detected bioavailable LIGHT unbound to the inhibitor Decoy receptor-3 (DcR3). Bioavailable LIGHT levels were elevated in patients both on and off ventilatory support, with a trend toward higher levels in patients requiring mechanical ventilation. In hospitalized patients over the age of 60, who exhibited a mortality rate of 82%, LIGHT levels were significantly higher (P = 0.0209) in those who died than in survivors. As previously reported, interleukin 6 (IL-6) levels were also elevated in these patients, with significantly (P = 0.0076) higher levels observed in patients who died than in survivors, paralleling the LIGHT levels. Although attempts to block IL-6 binding to its receptor have shown limited success in COVID-19 CRS, neutralization of LIGHT may prove to be more effective owing to its more central role in regulating antiviral immune responses. The findings presented here demonstrate that LIGHT is a cytokine which may play an important role in COVID-19 patients presenting with acute respiratory distress syndrome (ARDS) and CRS and suggest that LIGHT neutralization may be beneficial to COVID-19 patients.
BACKGROUND.Severe coronavirus disease 2019 (COVID-19) infection is associated with a dysregulated immune response, which can result in cytokine release syndrome and acute respiratory distress syndrome (ARDS). Patients with COVID-19-associated ARDS have elevated free serum levels of the cytokine lymphotoxin-like inducible protein that competes with glycoprotein D for herpesvirus entry on T cells (LIGHT; also known as TNFSF14). Such patients may benefit from LIGHT neutralization therapy.METHODS. This randomized, double-blind, multicenter, proof-of-concept trial enrolled adults hospitalized with COVID-19-associated pneumonia and mild to moderate ARDS. Patients received standard of care plus a single dose of CERC-002 or placebo. The primary endpoint was the proportion of patients receiving CERC-002 who remained alive and free of respiratory failure through day 28. Safety was assessed via adverse event monitoring. RESULTS.For most of the 83 enrolled patients, standard of care included systemic corticosteroids (88.0%) or remdesivir (57.8%). A higher proportion of patients remained alive and free of respiratory failure through day 28 after receiving CERC-002 (83.9%) versus placebo (64.5%; P = .044), including in patients ≥60 years (76.5% vs 47.1%, respectively; P = .042).Mortality rates were 7.7% (CERC-002) and 14.3% (placebo) at day 28 and 10.8% and 22.5%, respectively, at day 60. Treatment-emergent adverse events were less frequent with CERC-002 than placebo. CONCLUSION.For patients with COVID-19-associated ARDS, adding CERC-002 to standard of care treatment reduces LIGHT levels and might reduce the risk of respiratory failure and death. TRIAL REGISTRATION. ClinicalTrials.gov NCT04412057.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.