The sequence drafts of wild emmer and bread wheat facilitated high resolution, genome-wide analysis of transposable elements (TEs), which account for up to 90% of the wheat genome. Despite extensive studies, the role of TEs in reshaping nascent polyploid genomes remains to be fully understood. In this study, we retrieved miniature inverted-repeat transposable elements (MITEs) from the recently published genome drafts of Triticum aestivum, Triticum turgidum ssp. dicoccoides, Aegilops tauschii and the available genome draft of Triticum urartu. Overall, 239,126 MITE insertions were retrieved, including 3,874 insertions of a newly identified, wheat-unique MITE family that we named “Inbar”. The Stowaway superfamily accounts for ~80% of the retrieved MITE insertions, while Thalos is the most abundant family. MITE insertions are distributed in the seven homologous chromosomes of the wild emmer and bread wheat genomes. The remarkably high level of insertions in the B sub-genome (~59% of total retrieved MITE insertions in the wild emmer genome draft, and ~41% in the bread wheat genome draft), emphasize its highly repetitive nature. Nearly 52% of all MITE insertions were found within or close (less than 100bp) to coding genes, and ~400 MITE sequences were found in the bread wheat transcriptome, indicating that MITEs might have a strong impact on wheat genome expression. In addition, ~40% of MITE insertions were found within TE sequences, and remarkably, ~90% of Inbar insertions were located in retrotransposon sequences. Our data thus shed new light on the role of MITEs in the diversification of allopolyploid wheat species.
Transposable elements (TEs) are major contributors to genome plasticity and thus are likely to have a dramatic impact on genetic diversity and speciation. Recent technological developments facilitated the sequencing and assembly of the wheat genome, opening the gate for whole genome analysis of TEs in wheat, which occupy over 80% of the genome. Questions that have been long unanswered regarding TE dynamics throughout the evolution of wheat, are now being addressed more easily, while new questions are rising. In this review, we discuss recent advances in the field of TE dynamics in wheat and possible future directions.
Mutations in myocyte enhancer factor 2C ( MEF2C ), an important transcription factor in neurodevelopment, are associated with a Rett-like syndrome. Structural variants (SVs) upstream of MEF2C , which do not disrupt the gene itself, have also been found in patients with a similar phenotype, suggesting that disruption of MEF2C regulatory elements can also cause a Rett-like phenotype. To characterize those elements that regulate MEF2C during neural development and that are affected by these SVs, we used genomic tools coupled with both in vitro and in vivo functional assays. Through circularized chromosome conformation capture sequencing (4C-seq) and the assay for transposase-accessible chromatin using sequencing (ATAC-seq), we revealed a complex interaction network in which the MEF2C promoter physically contacts several distal enhancers that are deleted or translocated by disease-associated SVs. A total of 16 selected candidate regulatory sequences were tested for enhancer activity in vitro , with 14 found to be functional enhancers. Further analyses of their in vivo activity in zebrafish showed that each of these enhancers has a distinct activity pattern during development, with eight enhancers displaying neuronal activity. In summary, our results disentangle a complex regulatory network governing neuronal MEF2C expression that involves multiple distal enhancers. In addition, the characterized neuronal enhancers pose as novel candidates to screen for mutations in neurodevelopmental disorders, such as Rett-like syndrome.
Background: Following allopolyploidization, nascent polyploid wheat species react with massive genomic rearrangements, including deletion of transposable element-containing sequences. While such massive rearrangements are considered to be a prominent process in wheat genome evolution and speciation, their structure, extent, and underlying mechanisms remain poorly understood. Results: In this study, we retrieved ~3500 insertions of a specific variant of Fatima, one of the most dynamic gypsy long-terminal repeat retrotransposons in wheat from the recently available high-quality genome drafts of Triticum aestivum (bread wheat) and Triticum turgidum ssp. dicoccoides or wild emmer, the allotetraploid mother of all modern wheats. The dynamic nature of Fatima facilitated the identification of large (i.e., up to ~ 1 million bases) Fatima-containing insertions/deletions (indels) upon comparison of bread wheat and wild emmer genomes. We characterized 11 such indels using computer-assisted analysis followed by PCR validation, and found that they occurred via unequal intra-strand recombination or double-strand break (DSB) events. In most cases, indels breakpoints were located within transposable element sequences. Additionally, we observed one case of introgression of novel DNA fragments from an unknown source into the wheat genome. Conclusions: Our data thus indicate that massive large-scale DNA rearrangements might play a prominent role in wheat speciation.
Following allopolyploidization, nascent polyploid wheat species react with massive genomic rearrangements, including deletion of transposable element-containing sequences. While such massive rearrangements are considered to be a prominent process in wheat genome evolution and speciation, their structure, extent, and underlying mechanisms remain poorly understood. In this study, we retrieved~3500 insertions of a specific variant of Fatima, one of the most dynamic gypsy long-terminal repeat retrotransposons in wheat from the recently available high-quality genome drafts of Triticum aestivum (bread wheat) and Triticum turgidum ssp. dicoccoides or wild emmer, the allotetraploid mother of all modern wheats. The dynamic nature of Fatima facilitated the identification of large (i.e., up to~1 million bases) Fatima-containing insertions/deletions (indels) upon comparison of bread wheat and wild emmer genomes. We characterized 11 such indels using computer-assisted analysis followed by PCR validation, and found that they might have occurred via unequal intra-strand recombination or double-strand break (DSB) events. Additionally, we observed one case of introgression of novel DNA fragments from an unknown source into the wheat genome. Our data thus indicate that massive large-scale DNA rearrangements might play a prominent role in wheat speciation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.