GeneCards, the human gene compendium, enables researchers to effectively navigate and inter-relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways. Our recently launched Version 4 has a revamped infrastructure facilitating faster data updates, better-targeted data queries, and friendlier user experience. It also provides a stronger foundation for the GeneCards suite of companion databases and analysis tools. Improved data unification includes gene-disease links via MalaCards and merged biological pathways via PathCards, as well as drug information and proteome expression. VarElect, another suite member, is a phenotype prioritizer for next-generation sequencing, leveraging the GeneCards and MalaCards knowledgebase. It automatically infers direct and indirect scored associations between hundreds or even thousands of variant-containing genes and disease phenotype terms. VarElect's capabilities, either independently or within TGex, our comprehensive variant analysis pipeline, help prepare for the challenge of clinical projects that involve thousands of exome/genome NGS analyses. © 2016 by John Wiley & Sons, Inc.
A major challenge in understanding gene regulation is the unequivocal identification of enhancer elements and uncovering their connections to genes. We present GeneHancer, a novel database of human enhancers and their inferred target genes, in the framework of GeneCards. First, we integrated a total of 434 000 reported enhancers from four different genome-wide databases: the Encyclopedia of DNA Elements (ENCODE), the Ensembl regulatory build, the functional annotation of the mammalian genome (FANTOM) project and the VISTA Enhancer Browser. Employing an integration algorithm that aims to remove redundancy, GeneHancer portrays 285 000 integrated candidate enhancers (covering 12.4% of the genome), 94 000 of which are derived from more than one source, and each assigned an annotation-derived confidence score. GeneHancer subsequently links enhancers to genes, using: tissue co-expression correlation between genes and enhancer RNAs, as well as enhancer-targeted transcription factor genes; expression quantitative trait loci for variants within enhancers; and capture Hi-C, a promoter-specific genome conformation assay. The individual scores based on each of these four methods, along with gene–enhancer genomic distances, form the basis for GeneHancer’s combinatorial likelihood-based scores for enhancer–gene pairing. Finally, we define ‘elite’ enhancer–gene relations reflecting both a high-likelihood enhancer definition and a strong enhancer–gene association.GeneHancer predictions are fully integrated in the widely used GeneCards Suite, whereby candidate enhancers and their annotations are displayed on every relevant GeneCard. This assists in the mapping of non-coding variants to enhancers, and via the linked genes, forms a basis for variant–phenotype interpretation of whole-genome sequences in health and disease. Database URL: http://www.genecards.org/
The MalaCards human disease database (http://www.malacards.org/) is an integrated compendium of annotated diseases mined from 68 data sources. MalaCards has a web card for each of ∼20 000 disease entries, in six global categories. It portrays a broad array of annotation topics in 15 sections, including Summaries, Symptoms, Anatomical Context, Drugs, Genetic Tests, Variations and Publications. The Aliases and Classifications section reflects an algorithm for disease name integration across often-conflicting sources, providing effective annotation consolidation. A central feature is a balanced Genes section, with scores reflecting the strength of disease-gene associations. This is accompanied by other gene-related disease information such as pathways, mouse phenotypes and GO-terms, stemming from MalaCards’ affiliation with the GeneCards Suite of databases. MalaCards’ capacity to inter-link information from complementary sources, along with its elaborate search function, relational database infrastructure and convenient data dumps, allows it to tackle its rich disease annotation landscape, and facilitates systems analyses and genome sequence interpretation. MalaCards adopts a ‘flat’ disease-card approach, but each card is mapped to popular hierarchical ontologies (e.g. International Classification of Diseases, Human Phenotype Ontology and Unified Medical Language System) and also contains information about multi-level relations among diseases, thereby providing an optimal tool for disease representation and scrutiny.
BackgroundNext generation sequencing (NGS) provides a key technology for deciphering the genetic underpinnings of human diseases. Typical NGS analyses of a patient depict tens of thousands non-reference coding variants, but only one or very few are expected to be significant for the relevant disorder. In a filtering stage, one employs family segregation, rarity in the population, predicted protein impact and evolutionary conservation as a means for shortening the variation list. However, narrowing down further towards culprit disease genes usually entails laborious seeking of gene-phenotype relationships, consulting numerous separate databases. Thus, a major challenge is to transition from the few hundred shortlisted genes to the most viable disease-causing candidates.ResultsWe describe a novel tool, VarElect (http://ve.genecards.org), a comprehensive phenotype-dependent variant/gene prioritizer, based on the widely-used GeneCards, which helps rapidly identify causal mutations with extensive evidence. The GeneCards suite offers an effective and speedy alternative, whereby >120 gene-centric automatically-mined data sources are jointly available for the task. VarElect cashes on this wealth of information, as well as on GeneCards’ powerful free-text Boolean search and scoring capabilities, proficiently matching variant-containing genes to submitted disease/symptom keywords. The tool also leverages the rich disease and pathway information of MalaCards, the human disease database, and PathCards, the unified pathway (SuperPaths) database, both within the GeneCards Suite. The VarElect algorithm infers direct as well as indirect links between genes and phenotypes, the latter benefitting from GeneCards’ diverse gene-to-gene data links in GenesLikeMe. Finally, our tool offers an extensive gene-phenotype evidence portrayal (“MiniCards”) and hyperlinks to the parent databases.ConclusionsWe demonstrate that VarElect compares favorably with several often-used NGS phenotyping tools, thus providing a robust facility for ranking genes, pointing out their likelihood to be related to a patient’s disease. VarElect’s capacity to automatically process numerous NGS cases, either in stand-alone format or in VCF-analyzer mode (TGex and VarAnnot), is indispensable for emerging clinical projects that involve thousands of whole exome/genome NGS analyses.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2722-2) contains supplementary material, which is available to authorized users.
Postgenomics data are produced in large volumes by life sciences and clinical applications of novel omics diagnostics and therapeutics for precision medicine. To move from “data-to-knowledge-to-innovation,” a crucial missing step in the current era is, however, our limited understanding of biological and clinical contexts associated with data. Prominent among the emerging remedies to this challenge are the gene set enrichment tools. This study reports on GeneAnalytics™ (), a comprehensive and easy-to-apply gene set analysis tool for rapid contextualization of expression patterns and functional signatures embedded in the postgenomics Big Data domains, such as Next Generation Sequencing (NGS), RNAseq, and microarray experiments. GeneAnalytics' differentiating features include in-depth evidence-based scoring algorithms, an intuitive user interface and proprietary unified data. GeneAnalytics employs the LifeMap Science's GeneCards suite, including the GeneCards®—the human gene database; the MalaCards—the human diseases database; and the PathCards—the biological pathways database. Expression-based analysis in GeneAnalytics relies on the LifeMap Discovery®—the embryonic development and stem cells database, which includes manually curated expression data for normal and diseased tissues, enabling advanced matching algorithm for gene–tissue association. This assists in evaluating differentiation protocols and discovering biomarkers for tissues and cells. Results are directly linked to gene, disease, or cell “cards” in the GeneCards suite. Future developments aim to enhance the GeneAnalytics algorithm as well as visualizations, employing varied graphical display items. Such attributes make GeneAnalytics a broadly applicable postgenomics data analyses and interpretation tool for translation of data to knowledge-based innovation in various Big Data fields such as precision medicine, ecogenomics, nutrigenomics, pharmacogenomics, vaccinomics, and others yet to emerge on the postgenomics horizon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.