In an attempt to find new antibiotics, novel ways of interfering with important biological functions should be explored, especially with those which are necessary or even irreplaceable for bacterial survival, growth, and virulence. The purpose of this review is to highlight B-type vitamin transporters from the energy-coupling factor (ECF) family, which are not present in humans, as potential antimicrobial targets. In addition, a druggability analysis of an ECF transporter for folic acid and sequence-conservation studies in seven prominent pathogens revealed new druggable pockets. Evaluation of the presence of de novo biosynthetic routes for the vitamins in question in the seven pathogens confirmed that this target class holds promise for the discovery of antimicrobial drugs with a new mechanism of action, possibly on a broad-spectrum level.
The energy-coupling factor (ECF) transporters are a family of transmembrane proteins involved in the uptake of vitamins in a wide range of bacteria. Inhibition of the activity of these proteins could reduce the viability of pathogens that depend on vitamin uptake. Their central role in the metabolism of bacteria and absence in humans make the ECF transporters a potential antibacterial target, which can be further investigated making use of a selective chemical probe. Here, we report on the virtual screening, design, synthesis, structure–activity relationships (SARs) and coarse-grained molecular dynamics simulations of the first class of inhibitors of the ECF transporters. We investigated the mechanism of action of this chemical class and profiled the best hit compounds regarding their pharmaceutical properties. The optimized hit has a minimum inhibitory concentration (MIC) value of 2 µg/mL against Streptococcus pneumoniae, which opens up the possibility to use this chemical class to investigate the role of the ECF transporters in health and disease.
Energy-coupling factor (ECF) transporters mediate import of micronutrients in prokaryotes. They consist of an integral membrane S-component (that binds substrate) and ECF module (that powers transport by ATP hydrolysis). It has been proposed that different S-components compete for docking onto the same ECF module, but a minimal liposome-reconstituted system, required to substantiate this idea, is lacking. Here, we co-reconstituted ECF transporters for folate (ECF-FolT2) and pantothenate (ECF-PanT) into proteoliposomes, and assayed for crosstalk during active transport. The kinetics of transport showed that exchange of S-components is part of the transport mechanism. Competition experiments suggest much slower substrate association with FolT2 than with PanT. Comparison of a crystal structure of ECF-PanT with previously determined structures of ECF-FolT2 revealed larger conformational changes upon binding of folate than pantothenate, which could explain the kinetic differences. Our work shows that a minimal in vitro system with two reconstituted transporters recapitulates intricate kinetics behaviour observed in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.