The solubilization behavior of nile red dye in aqueous surfactant and micellar solutions was studied by optical spectroscopic techniques, dynamic light scattering, and atomic force microscopy. Nile red exhibits considerable absorption in the submicellar concentration region. When dispersed in aqueous surfactant and/or micellar solution, nile red molecules tend to form nonemissive dimers and/or H-type aggregates through π-π stacking interactions. This phenomenon may limit the use of nile red in solubilization studies. In the presence of ionic SDS and CTAB micelles, the solubilization of nile red appears to take place primarily at the charged micellar surface within the interfacial region. Similarly, spectra in micellar solution of nonionic Triton X-100 revealed that nile red dye penetrates the hydrophilic, interfacial poly(oxyethylene) region of the micelles but cannot reach the hydrophobic, innermost core. Our results therefore suggest that nile red dye must be chosen carefully when probing (micellar) hydrophobic environments and (micro)domains.
Hyperbranched polymers are obtained through one-step polymerization reactions and exhibit properties that are very similar to those of perfect dendrimer analogues. Therefore, hyperbranched polymers are a suitable alternative for perfect dendrimers as building blocks for dendritic nanocarrier systems. With regard to using soluble hyperbranched polymers as carrier systems, their flexible chains are a major benefit as they can adopt and compartment guest molecules. Upon encapsulation, the properties of the host decides the fate of the guest, e.g., solubility, but the host can also shield a guest from the environment and protect it, e.g., from degradation and deactivation. With regard to the advantages of using hyperbranched polymers as nanocarrier systems and their scalable synthesis, we will discuss different types of hyperbranched polymers and their application as nanocarrier systems for drugs, dyes, and other guest molecules.
We here report on the synthesis of a bifunctional nanocarrier system based on amphiphilic hyperbranched polyglycerol (hPG), which is modified by introducing hydrophobic aromatic groups to the core and retaining hydrophilic groups in the shell. "Selective chemical differentiation" and chemo-enzymatic reaction strategies were used to synthesize this new core-shell type nanocarrier. The system shows an innovative bifunctional carrier capacity with both polymeric and unimolecular micelle-like transport properties. Hydrophobic guest molecules such as pyrene were encapsulated into the hydrophobic core of modified hPG via hydrophobic interactions as well as p-p stacking, analogous to a unimolecular micelle system. A second guest molecule, which has a high affinity to the shell like nile red, was solubilized in the outer shell of the host molecule, thus connecting the nanocarrier molecules to form aggregates. This model is confirmed by UV-Vis, fluorescence, atomic force microscopy, and dynamic light scattering, as well as release studies triggered by pH-changes and enzymes. Encapsulated guest molecules, respectively in the core and in the shell, present different controlled release profiles. The bifunctional nanocarrier system is a promising candidate for simultaneous delivery of different hydrophobic drugs for a combination therapy, e.g., in tumor treatment.
Dendritic core-shell architectures which are based on hyperbranched polyglycerol for the solubilization of hydrophobic drugs have been synthesized and characterized. The core of hyperbranched polyglycerol has been modified with hydrophobic biphenyl groups or perfluorinated chains to increase the core hydrophobicity of the macromolecules. These amphiphilic core-shell type architectures were then used to solubilize pyrene, nile red, and a perfluoro tagged diazo dye, as well as the drug nimodipine in water. Specific host-guest interactions such as fluorous-fluorous interactions could be tailored by this flexible core design and determined by UV spectroscopy. The transport capacity increased 450-fold for nile red, 47-fold for nimodipine, and 37-fold for pyrene at a polymer concentration of only 0.1 wt.-%. Surface tension measurements and scanning force microscopy (SFM) were used to reveal the aggregation properties of these complexes. The formation of supramolecular aggregates with diameters of ≈20 nm and critical aggregate concentrations of 2 × 10(-6) mol · L(-1) have been observed. This indicates the controlled self-assembly of the presented amphiphilic dendritic core-shell type architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.