Sedimentary patterns and hydrodynamic transport processes on modern carbonate platforms in arid climates are understudied compared to platforms in humid-tropical climates. The Al Wajh platformlocated in the Arabian-African desert beltis a large land-attached carbonate platform in the Red Sea providing an excellent opportunity to fill this gap. The platform covers some 1800 km 2 and is almost completely enclosed by a 115 km long reef-shoal belt. More than 200 sediment surface samples were analyzed in order to investigate the lateral sediment distribution within the lagoon. The seafloor map was refined integrating sample depths with previous published bathymetric information. Conductivity and temperature profiles were measured to study the lagoonal water body. The lagoon is dominated by poorly sorted, sandsized sediments with low total organic carbon content, while carbonate fines content shows significant lateral variation. Aragonite dominates sediment mineralogy with high-Mg calcite and low-Mg calcite being significant admixtures. Fine-grained siliciclastics are found across the entire lagoon, with angular quartz locally enriched in nearshore and distal areas. Seven component assemblages are defined ranging from benthic foraminifera and molluscrich to reef debris-rich component assemblages. Platform-interior ooids are for the first time documented from the modern Red Sea. The heterogeneous distribution of carbonate fines shows no water depth related trends, while the component assemblage arrangement is depth related. Hydrodynamics are interpreted to be the main mechanism controlling carbonate fines distribution in the lagoon. A nearshore enrichment of angular sand-sized quartz suggests influx through wadis during flash floods, while an almost even distribution of fine-grained siliciclastics possibly indicate aeolian import. These findings provide new insights to the importance of hydrodynamic transport processes for sediment distribution in a land-attached platform lagoon in an arid climate. Finally, this study presents a comparison with other modern platforms and discusses implications for improving strategies of hydrocarbon field development in rift-basin carbonates.
The characterization and modelling of carbonate reservoirs can still be significantly improved to account for complex property and fracture network heterogeneities at scales difficult to resolve in the subsurface. The objective of this research is to develop and establish workflows for high fidelity geological modelling and characterization using modern and ancient carbonate outcrop analogues. As a first step, we carefully selected high quality modern and ancient analogues to create comprehensive data sets on depositional heterogeneities. Advanced instrumentation and techniques were used such as 3D drone surveys, high-resolution surface geophysical surveys (50 MHz-100 MHz, and seismic), chirp sub-bottom profiler and high-resolution bathymetry mapping. These high-end techniques are paired with tried and tested standard geological techniques of measuring stratigraphic sections anchored by outcrop spectral gamma ray logs, analysis of sediment samples (texture, grain size, mineralogy, geochemistry) and fracture/fault surveys all integrated with full cores drilled in the outcrops. Using these, data models can be created for depositional and fracture heterogeneities at different scales and populated with ranges of property data like those found in actual reservoirs. The outcome will be a series of models for various carbonate reservoir settings and well location patterns with the goal of supporting drilling/exploration operations and reducing future development costs. The project is based on two large-scale research projects of Jurassic carbonates outcropping in central KSA and a large modern carbonate platform in the Red Sea. Jurassic outcrops were analyzed using a unique dataset of measured sections including spectral gamma ray logs (300 vertical m), drone photogrammetry data (4×4 km2 overflight and several km's of vertical cliffs), seismic data (2 km), and GPR data (8 km). Data expose lateral heterogeneities, facies dimensions, and fracture networks at different scales. The modern carbonate outcrops are an ideal laboratory to investigate lateral facies heterogeneities and their relation to environmental factors influencing sediment distribution (prevailing winds versus storms, climate and nutrients). Around 800 km of hydroacoustic data, 50 sediment cores and 200 sea-floor samples were collected exposing significant and complex heterogeneities. The outcome of these research projects significantly increases our understanding of property heterogeneity, facies distribution, fracture networks, and architecture of complex carbonate reservoirs. Resulting multi-scale modelling approaches and associated facies templates will improve the prediction of spatial heterogeneities of facies in subsurface reservoirs of similar settings. In addition, these datasets can be used as input for static analogue models and dynamic simulations to test sensitivities and determine optimum development scenarios for improving ultimate recovery.
<p>Investigation of carbonate platform architecture is a crucial element to understanding the evolution of a platform. Extensive studies have been done on the architectures of various modern carbonate platforms. However, compared to humid climates, detailed studies in arid climates are rare, although many ancient carbonate reservoirs are developed under these conditions.</p><p>This study investigates the Late Pleistocene architecture of the land-attached Al Wajh carbonate platform in the Northeastern Red Sea, Saudi Arabia. The platform is enclosed by a coral reef belt and characterized by a large lagoon (1,100 km<sup>2</sup>). The lagoon reaches 43 meters in depth and hosts more than 90 carbonate islands and numerous pinnacle and patch reefs. We utilize 700 km hydroacoustic data acquired using EdgeTech sub-bottom profiler during two research cruises with KAUST RV EXPLORER. An age model was established by utilizing a recently published Red Sea sea-level curve. Available climate data were used for the reconstructions of depositional environments.</p><p>Data analysis reveals five depositional units: U1(Holocene) to U5(Late Pleistocene). Nine hydroacoustic facies are identified to&#160;describe&#160;the internal architecture,&#160;from homogenous&#160;reflection-free to wavy laminated facies. The oldest unit (U5) consists of homogeneous facies and reef facies. The unit is overlain by units 4 and 3, with up to five meters thick homogeneous facies and stratified facies. Unit 2 has a maximum thickness of 3 meters and consists of wavy laminated facies. Unit 1 is the youngest unit and consists of several facies, including heterogeneous, homogeneous, stratified, drift, reef, and reef debris facies. During MIS5e (U5), the Red Sea was experiencing a pluvial period, while the sea level was 10 meters higher than the present, leading to total flooding of the lagoon. Most of today's exposed carbonate islands in the lagoon correspond to carbonate accumulation during MIS5e. The depositional environment is interpreted as carbonate-dominated with the frequent siliciclastic influx in the coastal region during heavy rain. In the subsequent periods (MIS 5d to 5a), sea level dropped stepwise and exposed the platform partly. Stratified facies indicate terrestrial sediment input introduced during short pluvial periods. In the following glacial period (MIS 4 to 2), the platform was fully exposed for over 70,000 years. Due to the hyper-arid climate, we interpret unit 2 as an aeolian deposit likely reworked during Holocene transgression. During the platform's flooding in the Holocene, carbonate sedimentation restarted while coastal near stratified facies indicate an increased terrestrial influx during the short Holocene pluvial period (10,000-6000 years ago). The modern Al Wajh lagoon experiences an arid climate, with active carbonate sedimentations and minimal terrestrial input. Although the Red Sea has experienced several humid periods during the last 125,000 years, and extensive diagenetic alteration is recognized in the island's drill cores, no karst morphology has been identified.</p><p>Results indicate that climate highly influences Al Wajh lagoon architecture, shown by its unique characteristics, including extensive carbonate deposition, intermittent terrestrial influx including aeolian deposits, and minimum karstification. Insights of this study will improve our understanding of the architecture of carbonate platforms in the subsurface deposited under similar conditions.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.