Penyakit pencernaan adalah penyakit yang sangat umum dan banyak terjadi di puskesmas. Penyakit pencernaan akan menyerang organ-organ pada sistem pencernaan sehingga mengganggu kerja sistem lainnya yang apabila tidak diperhatikan bisa menjadi lebih parah. Untuk menyelesaikan masalah yang ada peneliti berupaya membangun sistem cerdas untuk membantu masyarakat mengenali lebih dini penyakit pencernaan seperti GERD, dispepsia, kolera, hepatitis, apendisitis, disentri dan hemoroid. Berdasarkan gejala-gejala yang dimasukkan pasien ke dalam sistem nantinya sistem akan menggunakan metode forward chaining dan certainty factor sebagai mesin inferensinya yang akan menghasilkan diagnosa penyakit. Dari 36 data pasien yang telah di uji pada sistem dan dicocokkan dengan validasi pakar sebayak 36 data sesuai, artinya sistem memiliki akurasi sebesar 100% dari data uji. Dengan hasil ini peneliti berharap dapat membantu masyarakat sebagai media konsultasi awal mendiagnosa penyakit pencernaan.
Public service satisfaction is the result of public opinion and assessment for the service performance provided by the public service organizer apparatus. In real action, this public satisfaction survey is conducted periodically to discover the real value owned and anything that the public wants to get for its services. This then becomes one of the commitments of the Regional I BKN Yogyakarta in implementing the predetermined quality policies and service standards which are useful for improving the service quality for the public. Hence, additional efforts are needed in processing the data obtained from the public satisfaction survey report results to follow up according to the real requirements expected by the public in making decisions, so that they can be right on target. Researchers aim to make a decision support system prototype that gives an overview about the public service satisfaction rate, using the TOPSIS Method with the parameter data of satisfaction criteria and the survey data as well as the value range of the public service satisfaction survey in January to March 2019. Based on the data of the public service satisfaction test for that 3 months, either the results of the system prototype calculation or the manual calculation, 3-period compatibility with 100% was obtained.
In this paper, computational acceleration of color image segmentation using fuzzy c-means (FCM) algorithm has been presented. The color image is first converted from the Red Green Blue (RGB) color space to the YUV color space. Then, the luma (Y) information values are grouped according to the desired number of clusters using the FCM algorithm. The FCM algorithm is implemented on a Graphical Processing Unit (GPU) using the Compute Unified Device Library (CUDA) library which is developed by NVidia to speed up the computing time. Images used in this research are red blood cell images, geometry images and leaf images. The results of segmented images processed using GPU were seen identic to the results of segmented images processed using the Central Processing Unit (CPU). The computational time of the FCM algorithm can be accelerated by speed-up to 5,628 times faster and the average speed-up of all simulations done is 5,517 times faster.
Ikan cupang merupakan ikan air tawar asli asia tenggara yang memiliki warna yang menarik, sisik yang cemerlang dan indah, bentuk tubuh proporsional serta menawan, dan tergolong ikan yang agresif. Dalam penelitian kali ini saya menggunakan 3 jenis ikan cupang untuk melakukan klasifikasi dengan metode PCA dan KNN, semoga dengan adanya penelitian ini akan membantu pecinta ikan cupang dalam menentukan jenis ikan cupang. Penelitian ini dimulai dengan pengambilan sampel 3 jenis ikan cupang. Kemudian dilakukan cropping citra untuk menuju tahap proses selanjutnya yakni ekstraksi ciri, training dan testing. Masing-masing ikan di ambil 30 data citra .Total data pelatihan 45 data citra, dan 455 data citra digunakan sebagai data uji, total keseluruhan data 90 data citra. Pada proses ekstraksi ciri menggunakan ekstraksi ciri RGB,HSV dan area, Proses training dan testing menggunakan algoritma PCA dan klasifikasi menggunakan KNN. Hasil evaluasi pengenalan pola pada citra ikan cupang menggunakan klasifikasi K-NN berdasarkan ekstraksi ciri dengan PCA menghasilkan akurasi sebesar 93,33%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.