Abstrak Masyarakat Indonesia dengan kondisi yang berbeda khususnya kulit pada wajah. Hal tersebut menyebabkan beberapa penyakit yang dapat menyerang kulit wajah. Di Indonesia, banyak wanita yang menderita penyakit kulit, hal ini dibuktikan dari profil kesehatan Indonesia tahun 2015. Masyarakat banyak yang belum mengetahui penyakit kulit dan bahaya penyakit kulit akibat keterlambatan dalam penanganan. Penelitian ini akan mendeteksi penyakit kuit wajah secara real-time, lalu sistem ini akan mengklasifikasikan penyakit kulit yang ada di wajah. Tipe jaringan saraf yang disebut Convolutional Neural Network (CNN) cocok untuk tugas berhubungan gambar. Jaringan dilatih untuk mencari fitur, seperti tepi, sudut dan perbedaan warna, diseluruh gambar dan menggabungkannya menjadi bentuk yang kompleks. Aplikasi ini hanya dapat digunakan pada android sehingga menjalankan sistem secara real-time. Hasil yang didapat menunjukkan hasil yang cukup baik dengan menggunakan metode deep learning. Kata kunci: Convolutional Neural Network (CNN), Penyakit Kulit, TensorFlow, DeepLearning, Sistem Deteksi Abstract Indonesian people have different skin conditions, especially the skin on the face. This one causes several diseases that can attack facial skin. Indonesia's 2015 health profile shows that many women suffer from skin diseases. Many people do not know about skin diseases and the dangers caused by delays in handling. This study will detect facial skin disease in real-time, then this system will classify skin diseases on the face. A type of neural network called a Convolutional Neural Network (CNN) is suitable for image-related tasks. The system is regular to look for features, such as edges, angles, and color differences across images and combine them into complex shapes. This application only on android, so it runs the system in real-time. The results obtained show passably results using the deep learning method. Keywords: Convolutional Neural Network (CNN), Penyakit Kulit, TensorFlow, DeepLearning, Sistem Deteksi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.