Summary
Applications of ultrasound in medicine for therapeutic purposes have been an accepted and beneficial use of ultrasonic biological effects for many years. Low power ultrasound of about 1 MHz frequency has been widely applied since the 1950s for physical therapy in conditions such as tendinitis or bursitis. In the 1980s, high pressure-amplitude shockwaves came into use for mechanically resolving kidney stones, and “lithotripsy” rapidly replaced surgery as the most frequent treatment choice. The use of ultrasonic energy for therapy continues to expand, and approved applications now include uterine fibroid ablation, cataract removal (phacoemulsification), surgical tissue cutting and hemostasis, transdermal drug delivery, and bone fracture healing, among others. Undesirable bioeffects can occur including burns for thermal-based therapies and significant hemorrhage for mechanical-based therapies (e. g. lithotripsy). In all these therapeutic applications for bioeffects of ultrasound, standardization, ultrasound dosimetry, benefits assurance and side-effects risk minimization must be carefully considered in order to insure an optimal benefit to risk ratio for the patient. Therapeutic ultrasound typically has well-defined benefits and risks, and therefore presents a tractable safety problem to the clinician. However, safety information can be scattered, confusing or subject to commercial conflict of interest. Of paramount importance for managing this problem is the communication of practical safety information by authoritative groups, such as the AIUM, to the medical ultrasound community. In this overview, the Bioeffects Committee outlines the wide range of therapeutic ultrasound methods, which are in clinical use or under study, and provides general guidance for assuring therapeutic ultrasound safety.
Intense focused ultrasound can be used as a noninvasive method for spatially confined heating and coagulation within the skin or its underlying structures. These findings have a significant potential for the development of novel, noninvasive treatment devices in dermatology.
In this first clinical study of intense ultrasound therapy to facial tissues, the intense ultrasound system allowed for the safe and well-tolerated placement of targeted, precise, and consistent thermal injury zones in the dermis and subcutaneous tissues with sparing of the epidermis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.