We present a mitigation strategy to reduce the impact of non-linear galaxy bias on the joint ‘3 × 2pt’ cosmological analysis of weak lensing and galaxy surveys. The Ψ-statistics that we adopt are based on Complete Orthogonal Sets of E/B Integrals. As such they are designed to minimize the contributions to the observable from the smallest physical scales where models are highly uncertain. We demonstrate that Ψ-statistics carry the same constraining power as the standard two-point galaxy clustering and galaxy–galaxy lensing statistics, but are significantly less sensitive to scale-dependent galaxy bias. Using two galaxy bias models, motivated by halo model fits to data and simulations, we quantify the error in a standard 3 × 2pt analysis where constant galaxy bias is assumed. Even when adopting conservative angular scale cuts, that degrade the overall cosmological parameter constraints, we find of order 1σ biases for Stage III surveys on the cosmological parameter S8 = σ8(Ωm/0.3)α. This arises from a leakage of the smallest physical scales to all angular scales in the standard two-point correlation functions. In contrast, when analysing Ψ-statistics under the same approximation of constant galaxy bias, we show that the bias on the recovered value for S8 can be decreased by a factor of ∼2, with less conservative scale cuts. Given the challenges in determining accurate galaxy bias models in the highly non-linear regime, we argue that 3 × 2pt analyses should move towards new statistics that are less sensitive to the smallest physical scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.