Providing channel access opportunities for new service requests and guaranteeing continuous connections for ongoing flows until service completion are two challenges for service provisioning in wireless networks. Channel failures, which are typically caused by hardware and software failures or/and by intrinsic instability in radio transmissions, can easily result in network performance degradation. In cognitive radio networks (CRNs), secondary transmissions are inherently vulnerable to connection breaks due to licensed users' arrivals as well as channel failures. To explore the advantages of channel reservation on performance improvement in error-prone channels, we propose and analyze a dynamic channel reservation (DCR) algorithm and a dynamic spectrum access (DSA) scheme with three access privilege variations. The key idea of the DCR algorithm is to reserve a dynamically adjustable number of channels for the interrupted services to maintain service retainability for ongoing users or to enhance channel availability for new users. Furthermore, the DCR algorithm is embedded in the DSA scheme enabling spectrum access of primary and secondary users with different access privileges based on access flexibility for licensed shared access. The performance of such a CRN in the presence of homogeneous and heterogeneous channel failures is investigated considering different channel failure and repair rates.
Abstract-With the implementation of channel assembling (CA) techniques, higher data rate can be achieved for secondary users in multi-channel cognitive radio networks. Recent studies which are based on loss systems show that maximal capacity can be achieved using dynamic CA strategies. However the channel allocation schemes suffer from high blocking and forced termination when primary users become active. In this paper, we propose to introduce queues for secondary users so that those flows that would otherwise be blocked or forcibly terminated could be buffered and possibly served later. More specifically, in a multi-channel network with heterogeneous traffic, two queues are separately allocated to real-time and elastic users and channel access opportunities are distributed between these two queues in a way that real-time services receive higher priority. Two queuing schemes are introduced based on the delay tolerance of interrupted elastic services. Furthermore, continuous time Markov chain models are developed to evaluate the performance of the proposed CA strategy with queues, and the correctness as well as the preciseness of the derived theoretical models are verified through extensive simulations. Numerical results demonstrate that the integration of queues can further increase the capacity of the secondary network and spectrum utilization while decreasing blocking probability and forced termination probability.
Abstract-Flexible channel allocation may be applied to multichannel cognitive radio networks (CRNs) through either channel assembling (CA) or channel fragmentation (CF). While CA allows one secondary user (SU) occupy multiple channels when primary users (PUs) are absent, CF provides finer granularity for channel occupancy by allocating a portion of one channel to an SU flow. In this paper, we investigate the impact of CF together with CA for SU flows by proposing a channel access strategy which activates both CF and CA and correspondingly evaluating its performance. In addition, we also consider a novel scenario where CA is enabled for PU flows. The performance evaluation is conducted based on continuous time Markov chain (CTMC) modeling and simulations. Through mathematical analyses and simulation results, we demonstrate that higher system capacity can be achieved indeed by jointly employing both CA and CF, in comparison with the CA-only strategies. However, this benefit is obtained only under certain conditions which are pointed out in this paper. Furthermore, the theoretical capacity upper bound for SU flows with both CF and CA enabled is derived when PU activities are relatively static compared with SU flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.