The antibody specific for the malaria protein, Rhop-3, and FL-Rhop-3, were immobilized on the surface of a gold electrode modified with cysteamine. Colloidal gold was used to enhance the detection signal for Rhop-3 antigens. The Rhop-3 antibody was also immobilized on gold electrodes preactivated with dithiobis(succinimidyl proprionate) (DSP). Immobilization was performed at room temperature and at 37 °C. Cyclic voltammetry (CV) was used to monitor the interaction between the immobilized antibody and its cognate antigen in solution, using ferricyanide, K3Fe(CN)6, as reporting electroactive probe. Tests indicate recognition of Rhop-3 protein by the immobilized antibody. Antigen recognition was enhanced by incubation at 37 °C compared with room-temperature incubation. Our results suggest that an immunosensor can be developed and optimized to aid detection of Rhop-3 antigens in samples from malaria patients. As far as we are aware, this is the first amperometric immunosensor targeting Rhop-3 antigen as a malaria biomarker.
Accurate determination of nitrite either as such or as the breakdown product of nitric oxide (NO) is critical in a host of enzymatic reactions in various settings addressing structure-function relationships, as well as mechanisms and kinetics of molecular operation of enzymes. The most common way to quantify nitrite, for instance in nitric oxide synthase (NOS) mechanistic investigations, is the spectrophotometric assay based on the Griess reaction through external standard calibration. This assay is based on a two-step diazotization reaction, in which a cationic diazonium derivative of sulfanilamide is formed as intermediate before the final absorbing azo-product. We show that this intermediate is very sensitive to reducing agents that may be transferred from the reaction media under investigation. The interaction of this vital intermediate with the reducing agent, dithiothreitol (DTT), which is widely used in NOS reactions, is characterized by both electrochemical and spectroscopic means. The effect of DTT on the performance of external calibration, both in sample recovery studies and in actual NOS reactions, is presented. Finally an alternative method of standard additions, which partially compensates for the accuracy and sensitivity problems of external calibration, is proposed and discussed.
The long-term goal of this investigation is to study the effects of increased cholesterol levels on the molecular activity of membrane-bound enzymes such as nitric oxide synthase, that are critical in the functioning of the cardiovascular system. In this particular investigation, we used differential scanning calorimetry (DSC) and dielectric thermal analysis (DETA) to study the effect of added cholesterol on melting/recrystallization and dielectric behavior, respectively, of phosphatidylcholine (PC) bilayered thin films. We also used electrochemical methods to investigate the effect of added cholesterol on the redox behavior of the oxygenase domain of nitric oxide synthase as a probe embedded in the PC films. The results show that added cholesterol in the PC films seems to depress the molecular dynamics as indicated by lowered current responses in the presence of cholesterol as well as a slight increase of the transition temperature in the overall twophase regime behavior observed in PC cholesterol films. These results are rationalized in the context of the general DSC and DETA behaviors of the PC chol films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.