Subjective assessment of Quality of Experience in stereoscopic 3D requires new guidelines for the environmental setup as existing standards such as ITU-R BT.500 may no longer be appropriate. A first step is to perform cross-lab experiments in different viewing conditions on the same video sequences. Three international labs performed Absolute Category Rating studies on a freely available video database containing degradations that are mainly related to video quality degradations. Different conditions have been used in the labs: Passive polarized displays, active shutter displays, differences in viewing distance, the number of parallel viewers, and the voting device. Implicit variations were introduced due to the three different languages in Sweden, South Korea, and France. Although the obtained Mean Opinion Scores are comparable, slight differences occur in function of the video degradations and the viewing distance. An analysis on the statistical differences obtained between the MOS of the video sequences revealed that obtaining an equivalent number of differences may require more observers in some viewing conditions. It was also seen that the alignment of the meaning of the attributes used in Absolute Category Rating in different languages may be beneficial. Statistical analysis was performed showing influence of the viewing distance on votes and MOS results.
Stereoscopic 3D viewing experience has been studied quite intensively recently, but still the subjective test methods have not yet been settled. It has become clear that the 3D viewing experience cannot easily be described by just one scale. This paper describes a study where three different rating scales (Quality, Discomfort and Presence) are compared in a subjective test, combined with two viewing distances. The results shows that in a stereoscopic 3D video quality test targeting mainly coding distortions one scale such as video quality could be sufficient.
We consider the challenge of determining which rights are available for licensing within the context of algorithmic licensing of movies using blockchain technology. We model the space of rights using set theory. We define algorithms within our modelling context that implement basic transactions for our use case, and argue for their correctness. We evaluate our algorithms through experiments within a multi-node Hyperledger Fabric network, and establish the feasibility of our algorithms for the intended use case. CCS CONCEPTS• Security and privacy → Domain-specific security and privacy architectures; • Information systems → Data management systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.