A production spar designed for West African (WA) offshore conditions must consider possible resonance with long period swell, which might result in large amplitude heave oscillations. Preliminary study of a classic spar with diameter of 39 m (128 ft) and draft 198 m (650 ft) for a WA application led the authors to believe that excessive heave response of 5.2 m (17 ft) may occur at the natural period of 28 seconds. This led the team to investigate the possibility of adding a heave plate (circular disk) at the base of the spar to control the response to within 3.1 m (10 ft), which is the limit set by a typical compensation system. Important design issues arose with regards to the geometry of the plate, i.e. diameter and thickness. Numerical simulations and model testing were used to identify the influence of a heave plate on the heave response of the spar. Heave response for various diameters and thickness were investigated. Comparison of added mass and damping values were found to be in reasonable agreement. Issues such as effect of a centerwell and moorings, plate cutouts for ease of transportation were also investigated. Discussion of the experimental results and comparison with numerical simulations are presented in this paper, and some recommendations are made on optimum heave plate geometry.
INTRODUCTION:There are several studies on the microstructure of main arteries of the body but limited have been dealt with the neck arteries. It has been mentioned that the vascular pathologies like the thrombo-embolism, atherosclerosis and infarction are common in the branches of vertebral and internal carotid artery as compared to the branches of external carotid artery. OBJECTIVE: To study the histological structure of the 3 medium sized arteries of neck namely external carotid, internal carotid and vertebral artery, calculation of their mean pulse pressure and pulsatory power and to find any association between them if present. METHOD: Fresh samples of external carotid, internal carotid and vertebral artery each measuring 10mm in length were taken from five cadavers and prepared for histological examination under microscope using orcein and H&E stain. The mean pressure and pulsatory power of these arteries were calculated by taking the measurements such as wall thickness, lumen circumference, arterial wall area, and smooth muscle fibre density in tunica media in that arterial segment. RESULT: The pulsatory power of external carotid artery, internal carotid artery and vertebral artery is found to be 120, 273.3, 400 Joules /heart beat and the mean pressure is 17.1 mm Hg, 27.3 mm Hg and 33.3 mm Hg respectively. CONCLUSION: The thickness of tunica media of an artery is directly proportional to its pulsatory power. The mean pulse pressure, pulsatory power as well the number of smooth muscles fibres in tunica media are more in internal carotid artery and vertebral artery in comparison to external carotid artery. It may be a very important reason why vascular pathologies are less common in branches of external carotid as compare to internal carotid and vertebral artery.
In 1997, the Institute for Marine Dynamics (IMD) together with International Submarine Engineering Research Limited (ISER) and Memorial University of Newfoundland (MUN) proposed to design and test a 1/2 scale surface-piercing mast for the DOLPHIN. This new mast was to be designed in such a way that it would assist in controlling vehicle roll. Another goal was to reduce the drag of the mast. A new mast was designed with a 25% plain flap over its lower-half and active air ejection over its surface-piercing upper-half. Both methods of control were tested in the 200m Towing Tank at IMD using a 0.516 scale model of the DOLPHIN. This work was carried out in late 1997 and early 1998 with funding from IMD, MUN and ISER. The results of some of these experiments are presented and discussed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.