This paper presents a study on friction stir processed 1100 aluminum withincorporation of rice huskash derived, amorphous silica particles and fabricated at different tool rotational speeds. During friction stirring amorphous silica powder was placed into a groove made in the joining line of Al 1100 plates. Friction stirringwas performed with clockwise tool rotational speeds of 600 rpm, 865 rpm, 1140 rpm or 1500 rpm with a constant 45 mm/min travelling speed and a 2° tilt angle. High rotational speed (1140 rpm) facilitated material flow in the stir zone, contributing to fine aluminum matrix grain size (30-10µm) as a result of dynamic recrystallization. Stirring at this rotational speed also caused the fracturingrelated refinement of silica particles to 10µm particle sizethat isassociated with good distribution in the aluminum matrix. Reduction in wear rate of friction stir processed Al1100 with improved hardness was believed to be due to the presence of hard silicawith high interfacial strength and high hardness of recrystallized aluminum grains in the stir zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.