9The extent to which humans are modifying Earth's surface chemistry can be quantified by antimony, platinum, palladium, rhenium, rhodium and chromium currently exceed natural fluxes.
21For these elements mining is the major factor of anthropogenic influence, whereas petroleum
Mountain glaciers store dissolved organic carbon (DOC) that can be exported to river networks and subsequently respired to CO2. Despite this potential importance within the global carbon cycle, the seasonal variability and downstream transport of glacier-derived DOC in mountainous river basins remains largely unknown. To provide novel insight, here we present DOC concentrations and molecular-level dissolved organic matter (DOM) compositions from 22 nested, glaciated catchments (1.4 -81.8 % glacier cover by area) in the Upper Ganges Basin, Western Himalaya over the course of the Indian summer monsoon (ISM) in 2014. Aliphatic and peptidelike compounds were abundant in glaciated headwaters but were overprinted by soil-derived phenolic, polyphenolic and condensed aromatic material as DOC concentrations increase moving downstream. Across the basin, DOC concentrations and soil-derived compound class contributions decreased sharply from pre-to post-ISM, implying increased relative contribution of glaciated headwater signals as the monsoon progresses. Incubation experiments further revealed a strong compositional control on the fraction of bioavailable DOC (BDOC), with glacier-derived DOC exhibiting the highest bioavailability. We hypothesize that short-term (i.e. in the coming decades) increases in glacier melt flux driven by climate change will further bias exported DOM toward an aliphatic-rich, bioavailable signal, especially during the ISM and post-ISM seasons. In contrast, eventual decreases in glacier melt flux due to mass loss will likely lead to more a soillike DOM composition and lower bioavailability of exported DOC in the long term.
Understanding how dissolved trace elements chemically evolve in the Ganga River from source to sink is important to understand subcatchment contributions and chemical variability across space and time but remains poorly constrained. What exists is site-specific data sets that are focused on capturing contamination "hotspots." Here, we present riverine trace element concentrations of 38 targeted locations in the Ganga Basin. Samples in the headwater and the upstream segments of the river were collected during the premonsoon, monsoon, and postmonsoon seasons of 2014, 2015, and 2016, and the downstream samples were collected in 2016. In addition, monthly time-series samples were collected at a downstream site to capture the geochemical variability at a higher temporal-resolution. To evaluate the geogenic contributions, groundwater, rainwater, snow, glacier-ice, and sediment samples were also analyzed. We find that the river chemistry displays a wide spatio-temporal variability. Headwater samples are characterized by high concentrations of trace elements that are primarily controlled by ice meltwater, intense weathering, and interactions with glacial flour and are therefore geogenic in nature. Moreover, high concentrations of trace metals were also observed in a few localized downstream sites. However, such enriched signals are not persistent further downstream as they get diluted by the joining of large tributaries. We show that the dissolved trace element concentrations in the Ganga River are low compared to existing datasets and are comparable to the global average river water composition. We additionally quantified the present-day "baseline" concentration ranges to facilitate future water quality assessment in the Ganga Basin. 1. Introduction Global freshwater availability and quality are constantly changing. A simple explanation for such behavior is climate change and pollution associated with population increase (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.