BackgroundBloodstream infections (BSI) remain a major challenge with high mortality rate, with an incidence that is increasing worldwide. Early treatment with appropriate therapy can reduce BSI-related morbidity and mortality. However, despite recent progress in molecular based assays, complex sample preparation steps have become critical roadblock for a greater expansion of molecular assays. Here, we report a size based, label-free, bacteria separation from whole blood using elasto-inertial microfluidics.ResultsIn elasto-inertial microfluidics, the viscoelastic flow enables size based migration of blood cells into a non-Newtonian solution, while smaller bacteria remain in the streamline of the blood sample entrance and can be separated. We first optimized the flow conditions using particles, and show continuous separation of 5 μm particles from 2 μm at a yield of 95% for 5 µm particle and 93% for 2 µm particles at respective outlets. Next, bacteria were continuously separated at an efficiency of 76% from undiluted whole blood sample.ConclusionWe demonstrate separation of bacteria from undiluted while blood using elasto-inertial microfluidics. The label-free, passive bacteria preparation method has a great potential for downstream phenotypic and molecular analysis of bacteria.Electronic supplementary materialThe online version of this article (doi:10.1186/s12951-016-0235-4) contains supplementary material, which is available to authorized users.
We study numerically the inertial migration of a single rigid sphere and an oblate spheroid in straight square and rectangular ducts. A highly accurate interface-resolved numerical algorithm is employed to analyse the entire migration dynamics of the oblate particle and compare it with that of the sphere. Similarly to the inertial focusing of spheres, the oblate particle reaches one of the four face-centred equilibrium positions, however they are vertically aligned with the axis of symmetry in the spanwise direction. In addition, the lateral trajectories of spheres and oblates collapse into an equilibrium manifold before ending at the equilibrium positions, with the equilibrium manifold tangential to lines of constant background shear for both sphere and oblate particles. The differences between the migration of the oblate and sphere are also presented, in particular the oblate may focus on the diagonal symmetry line of the duct cross-section, close to one of the corners, if its diameter is larger than a certain threshold. Moreover, we show that the final orientation and rotation of the oblate exhibit a chaotic behaviour for Reynolds numbers beyond a critical value. Finally, we document that the lateral motion of the oblate particle is less uniform than that of the spherical particle due to its evident tumbling motion throughout the migration. In a square duct, the strong tumbling motion of the oblate in the first stage of the migration results in a lower lateral velocity and consequently longer focusing length with respect to that of the spherical particle. The opposite is true in a rectangular duct where the higher lateral velocity of the oblate in the second stage of the migration, with negligible tumbling, gives rise to shorter focusing lengths. These results can help the design of microfluidic systems for bio-applications. † Email address for correspondence: imanl@mech.kth.se arXiv:1703.05731v1 [physics.flu-dyn]
Passive particle manipulation using inertial and elasto-inertial microfluidics have received substantial interest in recent years and have found various applications in high throughput particle sorting and separation. For separation applications, elasto-inertial microfluidics has thus far been applied at substantial lower flow rates as compared to inertial microfluidics. In this work, we explore viscoelastic particle focusing and separation in spiral channels at two orders of magnitude higher Reynolds numbers than previously reported. We show that the balance between dominant inertial lift force, dean drag force and elastic force enables stable 3D particle focusing at dynamically high Reynolds numbers. Using a two-turn spiral, we show that particles, initially pinched towards the inner wall using an elasticity enhancer, PEO (polyethylene oxide), as sheath migrate towards the outer wall strictly based on size and can be effectively separated with high precision. As a proof of principle for high resolution particle separation, 15 µm particles were effectively separated from 10 µm particles. A separation efficiency of 98% for the 10 µm and 97% for the 15 µm particles was achieved. Furthermore, we demonstrate sheath-less, high throughput, separation using a novel integrated two-spiral device and achieved a separation efficiency of 89% for the 10 µm and 99% for the 15 µm particles at a sample flow rate of 1 mL/min—a throughput previously only reported for inertial microfluidics. We anticipate the ability to precisely control particles in 3D at extremely high flow rates will open up several applications, including the development of ultra-high throughput microflow cytometers and high-resolution separation of rare cells for point of care diagnostics.
A microfluidic centrifugation assisted precipitation method for rapid DNA visualization and quantification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.