The Ultra-Violet Imaging Telescope (UVIT) is one of the payloads in AS-TROSAT, the first Indian Space Observatory. The UVIT instrument has two 375 mm telescopes: one for the far-ultraviolet (FUV) channel (1300-1800Å), and the other for the near-ultraviolet (NUV) channel (2000-3000Å) and the visible (VIS) channel (3200-5500Å). UVIT is primarily designed for simultaneous imaging in the two ultraviolet channels with spatial resolution better than 1.8 , along with provision for slit-less spectroscopy in the NUV and FUV channels.The results of in-orbit calibrations of UVIT are presented in this paper.
Results of the initial calibration of the Ultra-Violet Imaging Telescope (UVIT) were reported earlier by Tandon et al. (2017a). The results reported earlier were based on the ground calibration as well as the first observations in orbit. Some additional data from the ground calibration and data from more in-orbit observations have been used to improve the results. In particular, extensive new data from in-orbit observations have been used to obtain (a) new photometric calibration which includes (i) zero-points (ii) flat fields (iii) saturation, (b) sensitivity variations (c) spectral calibration for the near Ultra-Violet (NUV; 2000−3000Å) and far Ultra-Violet (FUV; 1300−1800Å) gratings, (d) point spread function and (e) astrometric calibration which includes distortion. Data acquired over the last three years show continued good performance of UVIT with no reduction in sensitivity in both the UV channels.
The performance of the ultraviolet telescope (UVIT) on-board ASTROSAT is reported. The performance in orbit is also compared with estimates made from the calibrations done on the ground. The sensitivity is found to be within ~15% of the estimates, and the spatial resolution in the NUV is found to exceed significantly the design value of 1.8" and it is marginally better in the FUV. Images obtained from UVIT are presented to illustrate the details revealed by the high spatial resolution. The potential of multi-band observations in the ultraviolet with high spatial resolution is illustrated by some results.
A new radio spectrograph, dedicated to observe the Sun, has been recently commissioned by the Indian Institute of Astrophysics (IIA) at the Gauribidanur Radio Observatory, about 100 km North of Bangalore. The instrument, called the Gauribidanur Lowfrequency Solar Spectrograph (GLOSS), operates in the frequency range ≈ 40 -440 MHz. Radio emission in this frequency range originates close to the Sun, typically in the radial distance range r ≈ 1.1 -2.0 R . This article describes the characteristics of the GLOSS and the first results. (UK). SOHO is a project of international cooperation between ESA and NASA. The SOHO-LASCO CME catalog is generated and maintained at the CDAW Data Center by NASA and the Catholic University of America in cooperation with the Naval Research Laboratory. The SDO/AIA data are courtesy of the NASA/SDO and the AIA science teams. We are grateful to the referee for his/her comments, which helped us to bring out the results more clearly.
We report observations of weak, circularly polarized, structureless type III bursts from the solar corona in the absence of Hα/X-ray flares and other related activity, during the minimum between the sunspot cycles 23 and 24. The spectral information about the event obtained with the CALLISTO spectrograph at Mauritius revealed that the drift rate of the burst is ≈−30 MHz s −1 is in the range 50-120 MHz. Two-dimensional imaging observations of the burst at 77 MHz obtained with the Gauribidanur radioheliograph indicate that the emission region was located at a radial distance of ≈1.5 R in the solar atmosphere. The estimated peak brightness temperature of the burst at 77 MHz is ∼10 8 K. We derived the average magnetic field at the aforementioned location of the burst using the one-dimensional (east-west) Gauribidanur radio polarimeter at 77 MHz, and the value is ≈2.5 ± 0.2 G. We also estimated the total energy of the non-thermal electrons responsible for the observed burst as ≈1.1 × 10 24 erg. This is low compared to the energy of the weakest hard X-ray microflares reported in the literature, which is about ∼10 26 erg. The present result shows that non-thermal energy releases that correspond to the nanoflare category (energy ∼10 24 erg) are taking place in the solar corona, and the nature of such small-scale energy releases has not yet been explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.