The gastrointestinal microbiota has come to the fore in the search for the causes of IBD. This shift has largely been driven by the finding of genetic polymorphisms involved in gastrointestinal innate immunity (particularly polymorphisms in NOD2 and genes involved in autophagy) and alterations in the composition of the microbiota that might result in inflammation (so-called dysbiosis). Microbial diversity studies have continually demonstrated an expansion of the Proteobacteria phylum in patients with IBD. Individual Proteobacteria, in particular (adherent-invasive) Escherichia coli, Campylobacter concisus and enterohepatic Helicobacter, have all been associated with the pathogenesis of IBD. In this Review, we comprehensively describe the various associations of Proteobacteria and IBD. We also examine the importance of pattern recognition in the extracellular innate immune response of the host with particular reference to Proteobacteria, and postulate that Proteobacteria with adherent and invasive properties might exploit host defenses, drive proinflammatory change, alter the intestinal microbiota in favor of dysbiosis and ultimately lead to the development of IBD.
Our understanding of the microbial involvement in inflammatory bowel disease (IBD) pathogenesis has increased exponentially over the past decade. The development of newer molecular tools for the global assessment of the gut microbiome and the identification of nucleotide-binding oligomerization domain-containing protein 2 in 2001 and other susceptibility genes for Crohn's disease in particular has led to better understanding of the aetiopathogenesis of IBD. The microbial studies have elaborated the normal composition of the gut microbiome and its perturbations in the setting of IBD. This altered microbiome or "dysbiosis" is a key player in the protracted course of inflammation in IBD. Numerous genome-wide association studies have identified further genes involved in gastrointestinal innate immunity (including polymorphisms in genes involved in autophagy: ATG16L1 and IGRM), which have helped elucidate the relationship of the local innate immunity with the adjacent luminal bacteria. These developments have also spurred the search for specific pathogens which may have a role in the metamorphosis of the gut microbiome from a symbiotic entity to a putative pathogenic one. Here we review advances in our understanding of microbial involvement in IBD pathogenesis over the past 10 years and offer insight into how this will shape our therapeutic management of the disease in the coming years.
The gastrointestinal microbiota is considered important in infl ammatory bowel disease (IBD) pathogenesis. Discoveries from established disease cohorts report reduced bacterial diversity, changes in bacterial composition, and a protective role for Faecalibacterium prausnitzii in Crohn ' s disease (CD). The majority of studies to date are however potentially confounded by the effect of treatment and a reliance on established rather than de-novo disease. METHODS:Microbial changes at diagnosis were examined by biopsying the colonic mucosa of 37 children: 25 with newly presenting, untreated IBD with active colitis (13 CD and 12 ulcerative colitis (UC)), and 12 pediatric controls with a macroscopically and microscopically normal colon. We utilized a dual-methodology approach with pyrosequencing (threshold >10,000 reads) and confi rmatory real-time PCR (RT-PCR). RESULTS:Threshold pyrosequencing output was obtained on 34 subjects (11 CD, 11 UC, 12 controls). No signifi cant changes were noted at phylum level among the Bacteroidetes, Firmicutes, or Proteobacteria. A signifi cant reduction in bacterial α -diversity was noted in CD vs. controls by three methods (Shannon, Simpson, and phylogenetic diversity) but not in UC vs. controls. An increase in Faecalibacterium was observed in CD compared with controls by pyrosequencing (mean 16.7 % vs. 9.1 % of reads, P = 0.02) and replicated by specifi c F. prausnitzii RT-PCR (36.0 % vs. 19.0 % of total bacteria, P = 0.02). No disease-specifi c clustering was evident on principal components analysis. CONCLUSIONS: Our results offer a comprehensive examination of the IBD mucosal microbiota at diagnosis, unaffected by therapeutic confounders or changes over time. Our results challenge the current model of a protective role for F. prausnitzii in CD, suggesting a more dynamic role for this organism than previously described.SUPPLEMENTARY MATERIAL is linked to the online version of the paper at
BACKGROUND More than 500,000 deaths are attributed to rotavirus gastroenteritis annually worldwide, with the highest mortality in India. Two successive, naturally occurring rotavirus infections have been shown to confer complete protection against moderate or severe gastroenteritis during subsequent infections in a birth cohort in Mexico. We studied the protective effect of rotavirus infection on subsequent infection and disease in a birth cohort in India (where the efficacy of oral vaccines in general has been lower than expected). METHODS We recruited children at birth in urban slums in Vellore; they were followed for 3 years after birth, with home visits twice weekly. Stool samples were collected every 2 weeks, as well as on alternate days during diarrheal episodes, and were tested by means of enzyme-linked immunosorbent assay and polymerase-chain-reaction assay. Serum samples were obtained every 6 months and evaluated for seroconversion, defined as an increase in the IgG antibody level by a factor of 4 or in the IgA antibody level by a factor of 3. RESULTS Of 452 recruited children, 373 completed 3 years of follow-up. Rotavirus infection generally occurred early in life, with 56% of children infected by 6 months of age. Levels of reinfection were high, with only approximately 30% of all infections identified being primary. Protection against moderate or severe disease increased with the order of infection but was only 79% after three infections. With G1P[8], the most common viral strain, there was no evidence of homotypic protection. CONCLUSIONS Early infection and frequent reinfection in a locale with high viral diversity resulted in lower protection than has been reported elsewhere, providing a possible explanation why rotavirus vaccines have had lower-than-expected efficacy in Asia and Africa. (Funded by the Wellcome Trust.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.