Glutamatergic retinotectal inputs mediated principally by NMDA receptors can be recorded from optic tectal neurons early during their morphological development in Xenopus tadpoles. As tectal cell dendrites elaborate, retinotectal synaptic responses acquire an AMPA receptor-mediated synaptic component, in addition to the NMDA component. Here, we tested whether glutamatergic activity was required for the elaboration of dendritic arbors in Xenopus optic tectal neurons. In vivo time-lapse imaging of single DiI-labeled neurons shows that the NMDA receptor antagonist APV (100 microM) blocked the early development of the tectal cell dendritic arbor, whereas the AMPA receptor antagonist CNQX (20 microM) or the sodium channel blocker TTX (1 microM) did not. The decreased dendritic development is attributable to failure to add new branches and extend preexisting branches. These observations indicate that NMDA-type glutamatergic activity promotes the initial development of the dendritic arbor. At later stages of tectal neuron development when AMPA receptor-mediated synaptic transmission is strong, both APV and CNQX decrease dendritic arbor branch length, consistent with a role for glutamatergic synaptic transmission in maintaining dendritic arbor structure. These results indicate that AMPA and NMDA receptors can differentially influence dendritic growth at different stages of neuronal development, in correlation with changes in the relative contribution of the receptor subtype to synaptic transmission.
The neurotransmitter serotonin (5-HT) plays an important role in both the peripheral and central nervous systems. The biosynthesis of serotonin is regulated by two rate-limiting enzymes, tryptophan hydroxylase-1 and -2 (TPH1 and TPH2). We used a gene-targeting approach to generate mice with selective and complete elimination of the two known TPH isoforms. This resulted in dramatically reduced central 5-HT levels in Tph2 knockout (TPH2KO) and Tph1/Tph2 double knockout (DKO) mice; and substantially reduced peripheral 5-HT levels in DKO, but not TPH2KO mice. Therefore, differential expression of the two isoforms of TPH was reflected in corresponding depletion of 5-HT content in the brain and periphery. Surprisingly, despite the prominent and evolutionarily ancient role that 5-HT plays in both vertebrate and invertebrate physiology, none of these mutations resulted in an overt phenotype. TPH2KO and DKO mice were viable and normal in appearance. Behavioral alterations in assays with predictive validity for antidepressants were among the very few phenotypes uncovered. These behavioral changes were subtle in the TPH2KO mice; they were enhanced in the DKO mice. Herein, we confirm findings from prior descriptions of TPH1 knockout mice and present the first reported phenotypic evaluations of Tph2 and Tph1/Tph2 knockout mice. The behavioral effects observed in the TPH2 KO and DKO mice strongly confirm the role of 5-HT and its synthetic enzymes in the etiology and treatment of affective disorders.
In vivo imaging of optic tectal neurons in the intact Xenopus tadpole permits direct observation of the structural dynamics that occur during dendritic arbor formation. Based on images of single DiI-labeled neurons collected at daily intervals over a period of 6 d, we divided tectal cell development into three phases according to the total length of the dendritic arbor. During phase 1, the cell differentiates from a neuroepithelial cell type and extends an axon out of the tectum. The total dendritic branch length (TDBL) is <100 micrometers. During phase 2, when TDBL is 100-400 micrometers, the dendritic arbor grows rapidly. During phase 3, when TDBL is >400 micrometers, the dendritic arbor grows slowly and appears stable. Neurons at different positions along the rostrocaudal developmental axis of the tectum were imaged at 2 hr intervals over 6 hr and at 24 hr intervals over several days. Images collected at 2 hr intervals were analyzed to determine rates of branch additions and retractions. Morphologically complex, phase 3 neurons show half the rate of branch additions and retractions as phase 2 neurons. Therefore, rapidly growing neurons have dynamic dendritic arbors, and slower-growing neurons are structurally stable. The change in growth rate and dendritic arbor dynamics from phase 2 to phase 3 correlates with the developmental increase in synaptic strength in neurons located along the rostrocaudal tectal axis. The data are consistent with the idea that strong synaptic inputs stabilize dendritic arbor structures and that weaker synaptic inputs are permissive for a greater degree of dynamic rearrangements and a faster growth rate in the dendritic arbor.
Homer proteins are a family of multidomain cytosolic proteins that have been postulated to serve as scaffold proteins that affect responses to extracellular signals by regulating protein-protein interactions. We tested whether Homer proteins are involved in axon pathfinding in vivo, by expressing both wild-type and mutant isoforms of Homer in Xenopus optic tectal neurons. Time-lapse imaging demonstrated that interfering with the ability of endogenous Homer to form protein-protein interactions resulted in axon pathfinding errors at stereotypical choice points. These data demonstrate a function for scaffold proteins such as Homer in axon guidance. Homer may facilitate signal transduction from cell-surface receptors to intracellular proteins that govern the establishment of axon trajectories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.