Introduction: Adjuvants form an integral component in most of the inactivated and subunit vaccine formulations. Careful and proper selection of adjuvants helps in promoting appropriate immune responses against target pathogens at both innate and adaptive levels such that protective immunity can be elicited. Areas covered: Herein, we describe the recent progress in our understanding of the mode of action of adjuvants that are licensed for use in human vaccines or in clinical or pre-clinical stages at both innate and adaptive levels. Different pathogens have distinct characteristics, which require the host to mount an appropriate immune response against them. Adjuvants can be selected to elicit a tailor-made immune response to specific pathogens based on their unique properties. Identification of biomarkers of adjuvanticity for several candidate vaccines using omics-based technologies can unravel the mechanism of action of modern and experimental adjuvants. Expert opinion: Adjuvant technology has been revolutionized over the last two decades. In-depth understanding of the role of adjuvants in activating the innate immune system, combined with systems vaccinology approaches, have led to the development of next-generation, novel adjuvants that can be used in vaccines against challenging pathogens and in specific target populations.
ARTICLE HISTORY
Respiratory
syncytial virus (RSV) is a significant cause of mortality
and morbidity in infants, the elderly, immunocompromised individuals,
and patients with congenital heart diseases. Despite extensive efforts,
a vaccine against RSV is still not available. We have previously reported
the development of a subunit vaccine (ΔF/TriAdj) composed of
a truncated version of the fusion protein (ΔF) and a polymer-based
combination adjuvant (TriAdj). We compared inflammatory responses
of ΔF/TriAdj-vaccinated and unvaccinated mice following intranasal
challenge with RSV. Rapid and early inflammatory responses were observed
in lung samples from both groups but modulated in the vaccinated group
7 days after the viral challenge. The underlying mechanism of action
of ΔF/TriAdj was further studied through LC–MS-based
metabolomic profiling by using 12C- or 13C-dansyl
labeling for the amine/phenol submetabolome. RSV infection predominantly
affected the amino acid biosynthesis pathways and urea cycle, whereas
ΔF/TriAdj modulated the concentrations of almost all of the
altered metabolites. Tryptophan metabolites were significantly affected,
including indole, l-kynurenine, xanthurenic acid, serotonin,
5-hydroxyindoleacetic acid, and 6-hydroxymelatonin. The results from
the present study provide further mechanistic insights into the mode
of action of this RSV vaccine candidate and have important implications
in the design of metabolic therapeutic interventions.
eIn our previous report, we showed that astrakurkurone, a triterpene isolated from the Indian mushroom Astraeus hygrometricus (Pers.) Morgan, induced reactive oxygen species, leading to apoptosis in Leishmania donovani promastigotes, and also was effective in inhibiting intracellular amastigotes at the 50% inhibitory concentration of 2.5 g/ml. The aim of the present study is to characterize the associated immunomodulatory potentials and cellular activation provided by astrakurkurone, leading to effective antileishmanial activity in vitro and in vivo. Astrakurkurone-mediated antileishmanial activity was evaluated by real-time PCR and flow cytometry. The involvement of Toll-like receptor 9 (TLR9) was studied by in vitro assay in the presence of a TLR9 agonist and antagonist and by in silico modeling of a three-dimensional structure of the ectodomain of TLR9 and its interaction with astrakurkurone. Astrakurkurone caused a significant increase in TLR9 expression of L. donovani-infected macrophages along with the activation of proinflammatory responses. The involvement of TLR9 in astrakurkurone-mediated amastigote killing has been evidenced from the fact that a TLR9 agonist (CpG, ODN 1826) in combination with astrakurkurone enhanced the amastigote killing, while a TLR9 antagonist (bafilomycin A1) alone or in combination with astrakurkurone curbed the amastigote killing, which could be further justified by in silico evidence of docking between mouse TLR9 and astrakurkurone. Astrakurkurone was found to reduce the parasite burden in vivo by inducing protective cytokines, gamma interferon and interleukin 17. Moreover, astrakurkurone was nontoxic toward peripheral blood mononuclear cells of immunocompromised patients with visceral leishmaniasis. Astrakurkurone, a nontoxic antileishmanial, enhances the immune efficiency of host cells, leading to parasite clearance in vitro and in vivo.
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory infections in young children. Although the disease may be severe in immunocompromised, young, and elderly people, there is currently no approved vaccine. We previously reported the development and immunological assessment of a novel intranasal vaccine formulation consisting of a truncated version of the RSV fusion protein (ΔF) combined with a three-component adjuvant (TriAdj). Now, we aim to investigate the mechanism of action of the ΔF/TriAdj formulation by searching for metabolic alterations caused by intranasal immunization and the RSV challenge. We carried out untargeted lipidomics and submetabolome profiling (carboxylic acids and amine/ phenol-containing metabolites) of lung tissue from ΔF/TriAdj-immunized and nonimmunized, RSV-challenged mice. We observed significant changes of lipids involved in the lung surfactant layer for the nonimmunized animals compared to healthy controls but not for the immunized mice. Metabolic pathways involving the synthesis and regulation of amino acids and unsaturated fatty acids were also modulated by immunization and the RSV challenge. This study illustrates that lipidomic and metabolomic profiling could provide a more comprehensive understanding of the immunological and metabolic alterations caused by RSV and the modulation effected by the ΔF/TriAdj formulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.