In the present study, we investigate the hypothesis that mitochondrial oxidative damage and dysfunction precede the onset of neuronal loss after controlled cortical impact traumatic brain injury (TBI) in mice. Accordingly, we evaluated the time course of post-traumatic mitochondrial dysfunction in the injured cortex and hippocampus at 30 mins, 1, 3, 6, 12, 24, 48, and 72 h after severe TBI. A significant decrease in the coupling of the electron transport system with oxidative phosphorylation was observed as early as 30 mins after injury, followed by a recovery to baseline at 1 h after injury. A statistically significant (P<0.0001) decline in the respiratory control ratio was noted at 3 h, which persisted at all subsequent time-points up to 72 h after injury in both cortical and hippocampal mitochondria. Structural damage seen in purified cortical mitochondria included severely swollen mitochondria, a disruption of the cristae and rupture of outer membranes, indicative of mitochondrial permeability transition. Consistent with this finding, cortical mitochondrial calcium-buffering capacity was severely compromised by 3 h after injury, and accompanied by significant increases in mitochondrial protein oxidation and lipid peroxidation. A possible causative role for reactive nitrogen species was suggested by the rapid increase in cortical mitochondrial 3-nitrotyrosine levels shown as early as 30 mins after injury. These findings indicate that post-traumatic oxidative lipid and protein damage, mediated in part by peroxynitrite, occurs in mitochondria with concomitant ultrastructural damage and impairment of mitochondrial bioenergetics. The data also indicate that compounds which specifically scavenge peroxynitrite (ONOO(-)) or ONOO(-)-derived radicals (e.g. ONOO(-)+H(+) --> ONOOH --> (*)NO(2)+(*)OH) may be particularly effective for the treatment of TBI, although the therapeutic window for this neuroprotective approach might only be 3 h.
Recent evidence suggests that injection drug users who abuse heroin are at increased risk for CNS complications from human immunodeficiency virus (HIV) infection. Opiate drugs may intrinsically alter the pathogenesis of HIV by directly modulating immune function and by directly modifying the CNS response to HIV. Despite this, the mechanisms by which opiates increase the neuropathogenesis of HIV are uncertain. Herein we describe the effect of morphine and the HIV-1 protein toxin Tat 1-72 on astroglial function in cultures derived from ICR mice. Astroglia maintain the blood brain barrier and influence inflammatory signaling in the CNS. Astrocytes can express μ opioid receptors, and are likely targets for abused opiates, which preferentially activate μ-opioid receptors. While Tat alone disrupts astrocyte function, when combined with morphine, Tat causes synergistic increases in [Ca 2+ ] i. . Moreover, astrocyte cultures treated with morphine and Tat showed exaggerated increases in chemokine release including monocyte chemoattractant protein-1 (MCP-1) and regulated on activation, normal T cell expressed and secreted (RANTES), as well as interleukin-6 (IL-6). Morphine-Tat interactions were prevented by the μ-opioid receptor antagonist β-funaltrexamine, or by immunoneutralizing Tat 1-72 or substituting a non-toxic, deletion mutant (Tat Δ31-61 ). Our findings suggest that opiates may increase the vulnerability of the CNS to viral entry (via recruitment of monocytes/macrophages) and ensuing HIV encephalitis by synergistically increasing MCP-1 and RANTES release by astrocytes. The results further suggest ‡ Abbreviations: alpha chemokine receptor (CXCR); beta chemokine ligand (CCL); beta chemokine receptor (CCR); β-funaltrexamine (β-FNA); calcium-induced calcium release (CICR); excitatory amino acid transporter-2 (EAAT2); granulocyte macrophage colony stimulating factor (GM-CSF); granulocyte-colony stimulating factor (G-CSF); human immunodeficiency virus (HIV); human immunodeficiency virus encephalitis (HIVE); inositol trisphosphate (IP 3 ); interferon (IFN); interleukin (IL); intracellular Ca 2+ ([Ca 2+ ] i ); monocyte chemoattractant protein (MCP); nor-binaltorphimine (nor-BNI); phosphatidylinositol 3-kinase (PI3-kinase); phospholipase C-γ (PLCγ); regulated on activation, normal T cell expressed and secreted (RANTES); soluble TNF receptor subunit (sTNFR1); stem cell factor (SCF); thrombopoietin (TPO); transactivator of transcription (Tat); tumor necrosis factor-α (TNF-α); vascular endothelial growth factor (VEGF).
Human immunodeficiency virus-1 (HIV-1) infection affects the striatum resulting in gliosis and neuronal losses. To determine whether HIV-1 proteins induce striatal neurotoxicity through an apoptotic mechanism, mouse striatal neurons isolated on embryonic day 15 and the effects of HIV-1 Tat 1-72 and gp120 on survival were assessed in vitro.
We examined the ability of tempol, a catalytic scavenger of peroxynitrite (PN)-derived free radicals, to reduce cortical oxidative damage, mitochondrial dysfunction, calpain-mediated cytoskeletal (a-spectrin) degradation, and neurodegeneration, and to improve behavioral recovery after a severe (depth 1.0 mm), unilateral controlled cortical impact traumatic brain injury (CCI-TBI) in male CF-1 mice. Administration of a single 300 mg/kg intraperitoneal dose of tempol 15 mins after TBI produced a complete suppression of PN-mediated oxidative damage (3-nitrotyrosine, 3NT) in injured cortical tissue at 1 h after injury. Identical tempol dosing maintained respiratory function and attenuated 3NT in isolated cortical mitochondria at 12 h after injury, the peak of mitochondrial dysfunction. Multiple dosing with tempol (300 mg/kg intraperitoneally at 15 mins, 3, 6, 9, and 12 h) also suppressed a-spectrin degradation by 45% at its 24 h post-injury peak. The same dosing regimen improved 48 h motor function and produced a significant, but limited (17.4%, P < 0.05), decrease in hemispheric neurodegeneration at 7 days. These results are consistent with a mechanistic link between PNmediated oxidative damage to brain mitochondria, calpain-mediated proteolytic damage, and neurodegeneration. However, the modest neuroprotective effect of tempol suggests that multitarget combination strategies may be needed to interfere with posttraumatic secondary injury to a degree worthy of clinical translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.