The B-cell response against measles nucleoprotein (MeN) plays an important role in the control of measles infection. However, the data on B cell epitopes of MeN are still limited. The objective of this study was to identify B cell epitopes in MeN using monoclonal and polyclonal antibodies raised against recombinant yeast-expressed MeN (rMeN) as well as human sera from measles-positive individuals. After immunization of mice, 15 monoclonal antibodies (mAbs) against rMeN were generated. The B cell epitopes were localized using recombinant overlapping MeN fragments, PepScan analysis, and competitive ELISA. The epitopes of 14 mAbs were mapped within the C-terminus of MeN between amino acids (aa) 419 and 525. Four mAbs recognized a linear epitope located within a sequence of aa 440-448. Competitive ELISA revealed a cluster of conformational mAb epitopes. Cross-inhibition studies with human sera demonstrated similar localization of B cell epitopes recognized by serum antibodies from naturally infected individuals. Thus, the majority of B cell epitopes are located at the C-terminal domain of MeN. These findings provide new data on the antigenic structure of MeN and are in agreement with recent experimental evidence indicating that the C-terminal domain of MeN is well accessible on the surface of nucleocapsid-like structures.
In Europe, three genotypes of the genus Lyssavirus, family Rhabdoviridae, are present, classical rabies virus (RABV, genotype 1), European bat lyssavirus type 1 (EBLV-1, genotype 5) and European bat lyssavirus type 2 (EBLV-2, genotype 6). The entire authentic nucleoprotein (N protein) encoding sequences of RABV (challenge virus standard, CVS, strain), EBLV-1 and EBLV-2 were expressed in yeast Saccharomyces cerevisiae at high level. Purification of recombinant N proteins by caesium chloride gradient centrifugation resulted in yields between 14-17, 25-29 and 18-20 mg/l of induced yeast culture for RABV-CVS, EBLV-1 and EBLV-2, respectively. The purified N proteins were evaluated by negative staining electron microscopy, which revealed the formation of nucleocapsid-like structures. The antigenic conformation of the N proteins was investigated for their reactivity with monoclonal antibodies (mAbs) directed against different lyssaviruses. The reactivity pattern of each mAb was virtually identical between immunofluorescence assay with virus-infected cells, and ELISA and dot blot assay using the corresponding recombinant N proteins. These observations lead us to conclude that yeast-expressed lyssavirus N proteins share antigenic properties with naturally expressed virus protein. These recombinant proteins have the potential for use as components of serological assays for lyssaviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.