Concept drift primarily refers to an online supervised learning scenario when the relation between the input data and the target variable changes over time. Assuming a general knowledge of supervised learning in this paper we characterize adaptive learning process, categorize existing strategies for handling concept drift, discuss the most representative, distinct and popular techniques and algorithms, discuss evaluation methodology of adaptive algorithms, and present a set of illustrative applications. This introduction to the concept drift adaptation presents the state of the art techniques and a collection of benchmarks for researchers, industry analysts and practitioners. The survey aims at covering the different facets of concept drift in an integrated way to reflect on the existing scattered state-of-the-art.
In learning to classify streaming data, obtaining true labels may require major effort and may incur excessive cost. Active learning focuses on carefully selecting as few labeled instances as possible for learning an accurate predictive model. Streaming data poses additional challenges for active learning, since the data distribution may change over time (concept drift) and models need to adapt. Conventional active learning strategies concentrate on querying the most uncertain instances, which are typically concentrated around the decision boundary. Changes occurring further from the boundary may be missed, and models may fail to adapt. This paper presents a theoretically supported framework for active learning from drifting data streams and develops three active learning strategies for streaming data that explicitly handle concept drift. They are based on uncertainty, dynamic allocation of labeling efforts over time, and randomization of the search space. We empirically demonstrate that these strategies react well to changes that can occur anywhere in the instance space and unexpectedly.
In most challenging data analysis applications, data evolve over time and must be analyzed in near real time. Patterns and relations in such data often evolve over time, thus, models built for analyzing such data quickly become obsolete over time. In machine learning and data mining this phenomenon is referred to as concept drift. The objective is to deploy models that would diagnose themselves and adapt to changing data over time. This chapter provides an application oriented view towards concept drift research, with a focus on supervised learning tasks. First we overview and categorize application tasks for which the problem of concept drift is particularly relevant. Then we construct a reference framework for positioning application tasks within a spectrum of problems related to concept drift. Finally, we discuss some promising research directions from the application perspective, and present recommendations for application driven concept drift research and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.