Deep neural networks (DNNs) are able to predict a person’s gender from retinal fundus images with high accuracy, even though this task is usually considered hardly possible by ophthalmologists. Therefore, it has been an open question which features allow reliable discrimination between male and female fundus images. To study this question, we used a particular DNN architecture called BagNet, which extracts local features from small image patches and then averages the class evidence across all patches. The BagNet performed on par with the more sophisticated Inception-v3 model, showing that the gender information can be read out from local features alone. BagNets also naturally provide saliency maps, which we used to highlight the most informative patches in fundus images. We found that most evidence was provided by patches from the optic disc and the macula, with patches from the optic disc providing mostly male and patches from the macula providing mostly female evidence. Although further research is needed to clarify the exact nature of this evidence, our results suggest that there are localized structural differences in fundus images between genders. Overall, we believe that BagNets may provide a compelling alternative to the standard DNN architectures also in other medical image analysis tasks, as they do not require post-hoc explainability methods.
In medical image classification tasks like the detection of diabetic retinopathy from retinal fundus images, it is highly desirable to get visual explanations for the decisions of black-box deep neural networks (DNNs). However, gradient-based saliency methods often fail to highlight the diseased image regions reliably. On the other hand, adversarially robust models have more interpretable gradients than plain models but suffer typically from a significant drop in accuracy, which is unacceptable for clinical practice. Here, we show that one can get the best of both worlds by ensembling a plain and an adversarially robust model: maintaining high accuracy but having improved visual explanations. Also, our ensemble produces meaningful visual counterfactuals which are complementary to existing saliency-based techniques. Code is available under \url{https://github.com/valentyn1boreiko/Fundus_VCEs}.
Interpreting deep learning models typically relies on post-hoc saliency map techniques. However, these techniques often fail to serve as actionable feedback to clinicians, and they do not directly explain the decision mechanism. Here, we propose an inherently interpretable model that combines the feature extraction capabilities of deep neural networks with advantages of sparse linear models in interpretability. Our approach relies on straightforward but effective changes to a deep bag-of-local-features model (BagNet). These modifications lead to fine-grained and sparse class evidence maps which, by design, correctly reflect the model's decision mechanism. Our model is particularly suited for tasks which rely on characterising regions of interests that are very small and distributed over the image. In this paper, we focus on the detection of Diabetic Retinopathy, which is characterised by the progressive presence of small retinal lesions on fundus images. We observed good classification accuracy despite our added sparseness constraint. In addition, our model precisely highlighted retinal lesions relevant for the disease grading task and excluded irrelevant regions from the decision mechanism. The results suggest our sparse BagNet model can be a useful tool for clinicians as it allows efficient inspection of the model predictions and facilitates clinicians' and patients' trust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.