Herein we describe the synthesis and conformational analysis of a series of bicyclic thymidine derivatives and their evaluation as inhibitors of thymidine monophosphate kinase from Mycobacterium tuberculosis (TMPKmt), based on previously discovered bicyclic sugar nucleosides. With a K(i) value of 2.3 microm, 1-[3-aminomethyl-3,5-dideoxy-2-O,6-N-(thiocarbonyl)-beta-D-ribofuranosyl]thymine emerged as the most potent TMPK inhibitor of this series. Moreover, this promising compound displays inhibitory potency against Mycobacteria cultures with an IC(99) value of 100 microg mL(-1), thus promoting TMPKmt for the first time as a validated target for further inhibitory design. Attempts to rationalise the observed structure-activity relationship (SAR) involving molecular modelling and conformational analysis are described.
Abbreviations: TK: thymidine kinase; HSV: herpes simplex virus; VZV, varicella zoster virus; Dm: Drosophila melanogaster; dNK: deoxynucleoside kinase; dThd: thymidine; AZT: azidothymidine.
2Abstr act In an effort to increase the potency and selectivity of earlier identified substrate-based inhibitors of mitochondrial thymidine kinase 2 (TK-2), we now describe the synthesis of new thymidine analogues containing a 4-or 5-substituted 1,2,3-triazol-1-yl substituent at the 3'-position of the 2'-deoxyribofuranosyl ring. These analogues were prepared by Cu-and Ru-catalysed cycloadditions of 3'-azido-3'-deoxythymidine and the appropriate alkynes, which produced the 1,4-and 1,5-triazoles, respectively. Selected analogues showed nanomolar inhibitory activity for TK-2, while virtually not affecting the TK-1 counterpart. Enzyme kinetics indicated a competitive and uncompetitive inhibition profile against thymidine and the co-substrate ATP, respectively. This behavior is rationalized by suggesting that the inhibitors occupy the substrate-binding site in a TK-2-ATP complex that maintains the enzyme's active site in a closed conformation through the stabilization of a small lid domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.