Background The risk of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transmission through corneal graft is an ongoing debate and leads to strict restrictions in corneas procurement, leading to a major decrease in eye banking activity. The aims of this study are to specifically assess the capacity of human cornea to be infected by SARS-CoV-2 and promote its replication ex vivo, and to evaluate the real-life risk of corneal contamination by detecting SARS-CoV-2 RNA in corneas retrieved in donors diagnosed with Coronavirus Disease 2019 (COVID-19) and nonaffected donors. Methods and findings To assess the capacity of human cornea to be infected by SARS-CoV-2, the expression pattern of SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE-2) and activators TMPRSS2 and Cathepsins B and L in ocular surface tissues from nonaffected donors was explored by immunohistochemistry (n = 10 corneas, 78 ± 11 years, 40% female) and qPCR (n = 5 corneas, 80 ± 12 years, 40% female). Additionally, 5 freshly excised corneas (80 ± 12 years, 40% female) were infected ex vivo with highly concentrated SARS-CoV-2 solution (106 median tissue culture infectious dose (TCID50)/mL). Viral RNA was extracted from tissues and culture media and quantified by reverse transcription quantitative PCR (RT-qPCR) (viral RNA copies) 30 minutes (H0) and 24 hours (H24) after infection. To assess the risk of corneal contamination by SARS-CoV-2, viral RNA was tested by RT-qPCR (Ct value) in both corneas and organ culture media from 14 donors diagnosed with COVID-19 (74 ± 10 years, 29% female) and 26 healthy donors (79 ± 13 years, 57% female), and in organ culture media only from 133 consecutive nonaffected donors from 2 eye banks (73 ± 13 years, 29% female). The expression of receptor and activators was variable among samples at both protein and mRNA level. Based on immunohistochemistry findings, ACE-2 was localized mainly in the most superficial epithelial cells of peripheral cornea, limbus, and conjunctiva, whereas TMPRSS2 was mostly expressed in all layers of bulbar conjunctiva. A significant increase in total and positive strands of IP4 RNA sequence (RdRp viral gene) was observed from 30 minutes to 24 hours postinfection in central cornea (1.1 × 108 [95% CI: 6.4 × 107 to 2.4 × 108] to 3.0 × 109 [1.4 × 109 to 5.3 × 109], p = 0.0039 and 2.2 × 107 [1.4 × 107 to 3.6 × 107] to 5.1 × 107 [2.9 × 107 to 7.5 × 107], p = 0.0117, respectively) and in corneoscleral rim (4.5 × 109 [2.7 × 109 to 9.6 × 109] to 3.9 × 1010 [2.6 × 1010 to 4.4 × 1010], p = 0.0039 and 3.1 × 108 [1.2 × 108 to 5.3 × 108] to 7.8 × 108 [3.9 × 108 to 9.9 × 108], p = 0.0391, respectively). Viral RNA copies in ex vivo corneas were highly variable from one donor to another. Finally, viral RNA was detected in 3 out of 28 corneas (11%) from donors diagnosed with COVID-19. All samples from the 159 nonaffected donors were negative for SARS-CoV-2 RNA. The main limitation of this study relates to the limited sample size, due to limited access to donors diagnosed with COVID-19 and concomitant decrease in the procurement corneas from nonaffected donors. Conclusions In this study, we observed the expression of SARS-CoV-2 receptors and activators at the human ocular surface and a variable increase in viral RNA copies 24 hours after experimental infection of freshly excised human corneas. We also found viral RNA only in a very limited percentage of donors with positive nasopharyngeal PCR. The low rate of positivity in donors diagnosed with COVID-19 calls into question the utility of donor selection algorithms. Trial registration Agence de la Biomédecine, PFS-20-011 https://www.agence-biomedecine.fr/.
The pathophysiology underlying olfactory dysfunction is still poorly understood, and more efficient biomolecular tools are necessary to explore this aspect. Immunohistochemistry (IHC) on cross sections is one of the major tools to study the olfactory epithelium (OE), but does not allow reliable counting of olfactory sensory neurons (OSNs) or cartography of the OE. In this study, we want to present an easy immunostaining technique to compensate for these defects of IHC. Using the rat model, we first validated and pre-screened the key OSN markers by IHC on cross sections of the OE. Tuj-1, OMP, DCX, PGP9.5, and N-cadherin were selected for immunostaining on flat-mounted OE because of their staining of OSN dendrites. A simple technique for immunostaining on flat-mounted septal OE was developed: fixation of the isolated septum mucosa in 0.5% paraformaldehyde (PFA) preceded by pretreatment of the rat head in 1% PFA for 1 hour. This technique allowed us to correctly reveal the olfactory areas using all the 5 selected markers on septum mucosa. By combining the mature OSN marker (OMP) and an immature OSN marker (Tuj-1), we quantified the mature (OMP+, Tuj-1-), immature (OMP-, Tuj-1+), transitory (OMP+, Tuj-1+) and total OSN density on septal OE. They were respectively 42080 ± 11820, 49384 ± 7134, 14448 ± 5865 and 105912 ± 13899 cells per mm2 (mean ± SD). Finally, the same immunostaining technique described above was performed with Tuj-1 for OE cartography on ethmoid turbinates without flat-mount.
Corneal endothelial diseases are the leading cause of corneal transplantation. The global shortage of donor corneas has resulted in the investigation of alternative methods, such as cell therapy and tissue-engineered endothelial keratoplasty (TEEK), using primary cultures of human corneal endothelial cells (hCECs). The main challenge is optimizing the hCEC culture process to increase the endothelial cell density (ECD) and overall yield while preventing endothelial–mesenchymal transition (EndMT). Fetal bovine serum (FBS) is necessary for hCEC expansion but contains TGF-βs, which have been shown to be detrimental to hCECs. Therefore, we investigated various TGF-β signaling pathways using inhibitors to improve hCEC culture. Initially, we confirmed that TGF-β1, 2, and 3 induced EndMT on confluent hCECs without FBS. Using this TGF-β-induced EndMT model, we validated NCAM as a reliable biomarker to assess EndMT. We then demonstrated that, in a culture medium containing 8% FBS for hCEC expansion, TGF-β1 and 3, but not 2, significantly reduced the ECD and caused EndMT. TGF-β receptor inhibition had an anti-EndMT effect. Inhibition of the ROCK pathway, notably that of the P38 MAPK pathway, increased the ECD, while inhibition of the ERK pathway decreased the ECD. In conclusion, the presence of TGF-β1 and 3 in 8% FBS leads to a reduction in ECD and induces EndMT. The use of SB431542 or LY2109761 may prevent EndMT, while Y27632 or Ripasudil, and SB203580 or SB202190, can increase the ECD.
Fuchs endothelial corneal dystrophy (FECD) is a slowly evolving, bilateral disease of the corneal endothelium, characterized by an abnormal accumulation of extracellular matrix (ECM) in the basement membrane (Descemet’s membrane, DM). This results in the formation of small round excrescences, called guttae, and a progressive disappearance of endothelial cells. In the intermediate stage, the numerous guttae create significant optical aberrations, and in the late stage, the loss of endothelial function leads to permanent corneal edema. The molecular components of guttae have not been fully elucidated. In the current study, we conducted shotgun proteomics of the DMs, including guttae, obtained from patients with FECD and revealed that 32 proteins were expressed only in the FECD-DMs but not in the DMs of control subjects. Subsequent enrichment analyses identified associations with multiple ECM-related pathways. Immunostaining of flat-mounted DMs confirmed that 4 of the top 5 identified proteins (hemoglobin α, SRPX2, tenascin-C, and hemoglobin γδεβ) were expressed in FECD-DMs but not in non-FECD-DMs. Fibrinogen α was strongly expressed in FECD-DMs, but weakly expressed in non-FECD-DMs. We also demonstrated that matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) can display the in situ spatial distribution of biomolecules expressed in the DM, including the guttae.
PurposeTGF‐βs trigger ENdothelial‐Mesenchymal Transition (EnMT) in corneal endothelial cells (ECs) in animal models of endothelial wound healing. All the 3 isoforms of TGF‐β were detected in human aqueous humor and their receptors were detected in ECs. More and more evidence indicated that central and peripheral ECs have a different status.AimTo compare the effects of the 3 isoforms of TGF‐β1, 2 and 3 on ex vivo corneal endothelium and to compare their effects on central and peripheral endothelium.Methods10 pairs of fresh human corneas (body donation to Sciences) were incubated in a serum free medium for 2 weeks at 31°C. One cornea of each pair was incubated with 10 ng/mL of TGF β1 or 2 or 3, the paired cornea without TGF‐β or with another isoform of TGF‐β (n = 2 for each comparison). Immunolabelling using markers of ECs (ZO‐1, CD166, COX IV and N‐cadherin) and of mesenchymal cells (MCs) (CD44, Collagen 1 and fibronectin) was performed of flat‐mounted corneas. Staining was observed with confocal microscopy to map the regional expression of each marker.ResultsIn the controls, MC markers were expressed only by ECs located at the extreme periphery and by trabecular cells. The 3 isoforms of TGF‐β induced the loss of EC markers and the increase of MC markers in central and peripheral endothelium. The effects of TGF‐β1 and 2 were higher than that of TGF‐β3. TGF‐β‐induced alterations were more pronounced in central than in peripheral endothelium.ConclusionsNormal ECs at the extreme periphery and trabecular cells share characteristics of MCs. These ECs could then derive from trabecular cells. TGF‐β (10 ng/ml) induces EnMT in the center of the endothelium of normal corneas. Physiological concentration of TGF‐β might contribute to maintain peripheral ECs in an undifferentiated state able to slowly proliferate and contribute to endothelial homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.