Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency disorder associated with microthrombocytopenia, eczema, autoimmunity and predisposition to malignant lymphoma. Although rare, few cases of somatic mosaicism have been published in WAS patients to date. We here report on two Ukrainian siblings who were referred to us at the age of 3 and 4 years, respectively. Both patients suffered from severe WAS caused by a nonsense mutation in exon 1 of the WAS gene. In both siblings, flow cytometric analysis revealed the presence of WASp-positive and WASp-negative cell populations amongst T and B lymphocytes as well as NK cells. In contrast to previously described cases of revertant mosaisicm in WAS, molecular analyses in both children showed that the WASp-positive T cells, B cells, and NK cells carried multiple different second-site mutations, resulting in different missense mutations. To our knowledge, this is the first report describing somatic mosaicism in WAS patients caused by several independent second-site mutations in the WAS gene.
Gene therapy is a promising therapeutic approach to treat primary immunodeficiencies. Indeed, the clinical trial for the Wiskott-Aldrich Syndrome (WAS) that is currently ongoing at the Hannover Medical School (Germany) has recently reported the correction of all affected cell lineages of the hematopoietic system in the first treated patients. However, an extensive study of the clonal inventory of those patients reveals that LMO2, CCND2 and MDS1/EVI1 were preferentially prevalent. Moreover, a first leukemia case was observed in this study, thus reinforcing the need of developing safer vectors for gene transfer into HSC in general. Here we present a novel self-inactivating (SIN) vector for the gene therapy of WAS that combines improved safety features. We used the elongation factor 1 alpha (EFS) promoter, which has been extensively evaluated in terms of safety profile, to drive a codon-optimized human WASP cDNA. To test vector performance in a more clinically relevant setting, we transduced murine HSPC as well as human CD34+ cells and also analyzed vector efficacy in their differentiated myeloid progeny. Our results show that our novel vector generates comparable WAS protein levels and is as effective as the clinically used LTR-driven vector. Therefore, the described SIN vectors appear to be good candidates for potential use in a safer new gene therapy protocol for WAS, with decreased risk of insertional mutagenesis.
Tumor microenvironment is composed of different cell types including immune cells. Far from acting to eradicate cancer cells, these bone marrow-derived components could be involved in carcinogenesis and/or tumor invasion and metastasis. Here, we describe an alternative approach to treat solid tumors based on the genetic modification of hematopoietic stem and progenitor cells with lentiviral vectors. To achieve transgene expression in derivative tumor infiltrating leukocytes and to try to decrease systemic toxicity, we used the stress inducible human HSP70B promoter. Functionality of the promoter was characterized in vitro using hyperthermia. Antitumor efficacy was assessed by ex vivo genetic modification of lineage-negative cells with lentiviral vectors encoding the dominant-negative mutant of the human transforming growth factor-b receptor II (TbRIIDN) driven by the HSP70B promoter, and reinfusion of cells into recipient mice. Subsequently, syngeneic GL261 glioma cells were subcutaneously injected into bone marrow-transplanted mice. As a result, a massive antitumor response was observed in mice harboring TbRIIDN under the HSP70B promoter, without the need of any external source of stress. In summary, this study shows that stem cell-based gene therapy in combination with spatial and temporal control of transgene expression in derivative tumor-infiltrating cells represents an alternative strategy for the development of novel antitumor therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.