Summary One characteristic of solid tumors such as malignant melanoma is the acidification of the tumor microenvironment. The deregulation of cancer cell metabolism is considered a main cause of extracellular acidosis. Here, cancer cells utilize aerobic glycolysis instead of oxidative phosphorylation even under normoxic conditions, as originally described by Otto Warburg. These metabolic alterations cause enhanced acid production, especially of lactate and carbon dioxide (CO2). The extensive production of acidic metabolites and the enhanced acid export to the extracellular space cause a consistent acidification of the tumor microenvironment, thus promoting the formation of an acid‐resistant tumor cell population with increased invasive and metastatic potential. As melanoma is one of the deadliest and most metastatic forms of cancer, understanding the effects of this extracellular acidosis on human melanoma cells with distinct metastatic properties is important. The aim of this review was to summarize recent studies of the acidification of the tumor microenvironment, focusing on the specific effects of the acidic milieu on melanoma cells and to give a short overview of therapeutic approaches.
Acidosis of the tumor microenvironment is a characteristic of solid tumors such as malignant melanoma. Main causes of the extracellular acidification are metabolic alterations in cancer cells. While numerous studies showed that acidosis promotes tumor invasiveness, metastasis, and neoangiogenesis resulting in malignant progression, contrary data reported that acidosis induces cell apoptosis, inhibits cell proliferation, and mediates cell autophagy. Here, we show that low pH (pH 6.7) induces senescent/quiescent phenotype in melanoma cells after long‐time treatment defined by induction of SA‐ß‐galactosidase, upregulation of p21, G1/G0 cell cycle arrest, and reduction of proliferation. Moreover, we revealed that extracellular acidosis triggers the inhibition of eIF2α and subsequently the activation of ATF4 expression, a key component of the integrated stress response (ISR), indicating an acid‐mediated translation reprogramming. Interestingly, we also demonstrated that acidosis represses microphthalmia‐associated transcription factor (MITF) and activates the expression of the receptor tyrosine kinase AXL. This MITFlow/AXLhigh phenotype is correlated with drug resistance and therapeutic outcome in melanoma. Our results suggest that acidosis is an important microenvironmental factor triggering phenotypic plasticity and promoting tumor progression.
Molecular analyses of normal and diseased cells give insight into changes in gene expression and help in understanding the background of pathophysiological processes. Years after cDNA microarrays were established in research, RNA sequencing (RNA-seq) became a key method of quantitatively measuring the transcriptome. In this study, we compared the detection of genes by each of the transcriptome analysis methods: cDNA array, quantitative RT-PCR, and RNA-seq. As expected, we found differences in the gene expression profiles of the aforementioned techniques. Here, we present selected genes that exemplarily demonstrate the observed differences and calculations to reveal that a strong RNA secondary structure, as well as sample preparation, can affect RNA-seq. In summary, this study addresses an important issue with a strong impact on gene expression analysis in general. Therefore, we suggest that these findings need to be considered when dealing with data from transcriptome analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.