Considering the construction sector’s impact on the environment, it is necessary amongst other measures to change the way in which new construction or renovation projects of buildings are designed and how solutions are proposed and integrated. Nowadays, an effort is being made by designers to implement more sustainable and circular design in buildings, but because of the lack of tools that can provide designers with knowledge about the impacts of the solutions to be chosen, the sustainability factor does not enter in the decision-making process as a key factor. In this sense, the development of an eco-design tool and procedure for the decision-making process will allow designers to integrate into the design phase a circular design methodology and, in a practical way, will also promote sustainability and circularity concepts as a decision factor in the construction of buildings. The present work introduces an eco-design tool that was developed to integrate circularity and sustainability information into building-renovation projects. This tool enables the evaluation and comparison of solutions based on information provided by Environmental Product Declarations (EPD) or other LCA-based calculations as well as life cycle costing information, through the generation of radar graphics that simplify the overall analysis at the decision moment. The tool was tested in a simple case study of a building renovation process and allowed designers to understand the environmental and economic impacts that each competing solution carries, either related to the materials removed from the building or to the materials coming into the buildings being renovated. In this test application, the eco-design tool proved to be able to gather quantitative information regarding environmental and economic impacts, facilitating designers to access knowledge on the different solutions impacts and help them to make a design choice based on sustainability and circularity considerations.
This work contemplates the application of non-destructive techniques, sonic and environmental vibration tests, on a set of soil-cement compressed earth blocks reinforced masonry walls, which were built in laboratory, under the project SHS-Multirisk. The present work constitutes a comparative study that aimed at verifying the reliability of the sonic test method in masonry characterization and in testing a methodology of combined tests for structural assessment. For that purpose, a numerical model of the walls was developed and calibrated with the mechanical properties that were calculated from the sonic tests data. The results of the simulation of the numerical model were compared with the results of the environmental vibration tests, which enabled to reach a correlation between the frequencies, as well as enabling the indirect sonic tests, which were performed in the vertical direction, to result in an accurate prediction of the Young modulus to be used in the numerical models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.