Nuclear factor-kappa B (NF-κB) is a ubiquitous transcription factor that is involved in inflammatory and immune responses, as well as in regulation of expression of many other genes related to cell survival, proliferation, and differentiation. In mammals, NF-κB comprises five subunits that can bind to promoter regions of target genes as homodimers or heterodimers. The most common dimer is the p50/p65 heterodimer. The several combinations of dimers that can be formed contribute to the heterogeneous regulation of NF-κB target genes, and this heterogeneity is further increased by interactions of the NF-κB dimers with other transcription factors, such as steroid hormone receptors, activator protein-1 (AP-1), and cAMP response element binding protein (CREB). In the thyroid, several studies have demonstrated the involvement of NF-κB in thyroid autoimmunity, thyroid cancer, and thyroid-specific gene regulation. The role of NF-κB in thyroid autoimmunity was hypothesized more than 20 years ago, after the finding that the binding of distinct NF-κB heterodimers to the major histocompatibility complex class I gene is hormonally regulated. Further studies have shown increased activity of NF-κB in thyroid autoimmune diseases and in thyroid orbitopathy. Increased activity of NF-κB has also been observed in thyroid cancer, where it correlates with a more aggressive pattern. Of particular interest, mutation of some oncogenes or tumor suppressor genes involved in thyroid carcinogenesis results in constitutive activation of the NF-κB pathway. More recently, it has been shown that NF-κB also has a role in thyroid physiology, as it is fundamental for the expression of the main thyroid-specific genes, such as sodium iodide symporter, thyroid peroxidase, thyroglobulin, Pax8, and TTF-1 (NKX2-1).
Graves’ disease is the most common cause of thyrotoxicosis in women of childbearing age. Approximately 1% of pregnant women been treated before, or are being treated during pregnancy for Graves’ hyperthyroidism. In pregnancy, as in not pregnant state, thyroid-stimulating hormone (TSH) receptor (TSHR) antibodies (TRAbs) are the pathogenetic hallmark of Graves’ disease. TRAbs are heterogeneous for molecular and functional properties and are subdivided into activating (TSAbs), blocking (TBAbs), or neutral (N-TRAbs) depending on their effect on TSHR. The typical clinical features of Graves’ disease (goiter, hyperthyroidism, ophthalmopathy, dermopathy) occur when TSAbs predominate. Graves’ disease shows some peculiarities in pregnancy. The TRAbs disturb the maternal as well as the fetal thyroid function given their ability to cross the placental barrier. The pregnancy-related immunosuppression reduces the levels of TRAbs in most cases although they persist in women with active disease as well as in women who received definitive therapy (radioiodine or surgery) before pregnancy. Changes of functional properties from stimulating to blocking the TSHR could occur during gestation. Drug therapy is the treatment of choice for hyperthyroidism during gestation. Antithyroid drugs also cross the placenta and therefore decrease both the maternal and the fetal thyroid hormone production. The management of Graves’ disease in pregnancy should be aimed at maintaining euthyroidism in the mother as well as in the fetus. Maternal and fetal thyroid dysfunction (hyperthyroidism as well as hypothyroidism) are in fact associated with several morbidities. Monitoring of the maternal thyroid function, TRAbs measurement, and fetal surveillance are the mainstay for the management of Graves’ disease in pregnancy. This review summarizes the biochemical, immunological, and therapeutic aspects of Graves’ disease in pregnancy focusing on the role of the TRAbs in maternal and fetal function.
In this study we examined the effect of the synthetic peptide thymosin‐α1 (Tα1) on MHC class I expression in FRTL‐5 cells. Treatment with Tα1 increased expression of MHC class I surface molecules and mRNA, which reached its peak (153 ± 8 % of the control value) after 12 h. Chloramphenicol acetyltransferase (CAT) analysis, following transfection with a plasmid containing the regulatory sequence of MHC class I (or its deletion derivatives) with the CAT reporter gene, and electrophoretic mobility shift assay experiments demonstrated that the action of Tα1 was at the transcriptional level, and its mechanism of action is likely due to increased binding between the complex p50 / fra‐2 and the enhancer A sequence of the 5' flanking region of a swine class I gene (PD1). An increase in the expression of MHC class I surface molecules was also observed by flow cytometry in murine and human tumor cell lines and in primary cultures of human macrophages. This study shows for the first time an effect of Tα1 on the regulation of gene expression at the molecular level, and may further contribute to explaining the results obtained using Tα1 in the control of infectious diseases and tumor growth.
We examined the differences in physical self‐perception and motivation toward physical activity in early‐ and mid‐adolescent girls. Body Mass Index (BMI) and pubertal status, assessed by means of the Tanner scale, were collected in 11‐year‐old (n = 74) and 13‐year‐old girls (n = 60). The assessment included six scales from the Physical Self‐Description Questionnaire, the Physical Activity Enjoyment Scale, and the Situational Intrinsic Motivation Scale. Age differences emerged, with older girls showing a poorer physical perception and lower scores in intrinsic motivation and enjoyment of physical activity. In the subsample of 11‐year‐olds, findings showed that more developed girls reported a poorer physical perception on the scales of body fat, global physical self‐concept, and appearance, and a lower score in the PACES positive scale. Results underscore the need to promote interventions aimed at encouraging active lifestyles among children and adolescent girls, in order to prevent overweight prior to pubertal onset.
The Mc4 assay is a clinically useful index of remission and relapse in patients with GD. Larger studies are required to confirm these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.