Methane hydrate is an icelike substance that is stable at high pressure and low temperature in continental margin sediments. Since the discovery of a large number of gas flares at the landward termination of the gas hydrate stability zone off Svalbard, there has been concern that warming bottom waters have started to dissociate large amounts of gas hydrate and that the resulting methane release may possibly accelerate global warming. Here, we corroborate that hydrates play a role in the observed seepage of gas, but we present evidence that seepage off Svalbard has been ongoing for at least 3000 years and that seasonal fluctuations of 1° to 2°C in the bottom-water temperature cause periodic gas hydrate formation and dissociation, which focus seepage at the observed sites.
Identification of benthic megafauna is commonly based on analysis of physical samples or imagery acquired by cameras mounted on underwater platforms. Physical collection of samples is difficult, particularly from the deep sea, and identification of taxonomic morphotypes from imagery depends on resolution and investigator experience. Here, we show how an Underwater Hyperspectral Imager (UHI) can be used as an alternative in situ taxonomic tool for benthic megafauna. A UHI provides a much higher spectral resolution than standard RGB imagery, allowing marine organisms to be identified based on specific optical fingerprints. A set of reference spectra from identified organisms is established and supervised classification performed to identify benthic megafauna semi-autonomously. The UHI data provide an increased detection rate for small megafauna difficult to resolve in standard RGB imagery. In addition, seafloor anomalies with distinct spectral signatures are also detectable. In the region investigated, sediment anomalies (spectral reflectance minimum at ~675 nm) unclear in RGB imagery were indicative of chlorophyll a on the seafloor. Underwater hyperspectral imaging therefore has a great potential in seafloor habitat mapping and monitoring, with areas of application ranging from shallow coastal areas to the deep sea.
A bottom‐simulating reflector (BSR) occurs west of Svalbard in water depths exceeding 600 m, indicating that gas hydrate occurrence in marine sediments is more widespread in this region than anywhere else on the eastern North Atlantic margin. Regional BSR mapping shows the presence of hydrate and free gas in several areas, with the largest area located north of the Knipovich Ridge, a slow spreading ridge segment of the Mid Atlantic Ridge system. Here heat flow is high (up to 330 mW m−2), increasing toward the ridge axis. The coinciding maxima in across‐margin BSR width and heat flow suggest that the Knipovich Ridge influenced methane generation in this area. This is supported by recent finds of thermogenic methane at cold seeps north of the ridge termination. To evaluate the source rock potential on the western Svalbard margin, we applied 1‐D petroleum system modeling at three sites. The modeling shows that temperature and burial conditions near the ridge were sufficient to produce hydrocarbons. The bulk petroleum mass produced since the Eocene is at least 5 kt and could be as high as ~0.2 Mt. Most likely, source rocks are Miocene organic‐rich sediments and a potential Eocene source rock that may exist in the area if early rifting created sufficiently deep depocenters. Thermogenic methane production could thus explain the more widespread presence of gas hydrates north of the Knipovich Ridge. The presence of microbial methane on the upper continental slope and shelf indicates that the origin of methane on the Svalbard margin varies spatially.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.