Arginase is a widely known enzyme of the urea cycle that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. The action of arginase goes beyond the boundaries of hepatic ureogenic function, being widespread through most tissues. Two arginase isoforms coexist, the type I (Arg1) predominantly expressed in the liver and the type II (Arg2) expressed throughout extrahepatic tissues. By producing L-ornithine while competing with nitric oxide synthase (NOS) for the same substrate (L-arginine), arginase can influence the endogenous levels of polyamines, proline, and NO•. Several pathophysiological processes may deregulate arginase/NOS balance, disturbing the homeostasis and functionality of the organism. Upregulated arginase expression is associated with several pathological processes that can range from cardiovascular, immune-mediated, and tumorigenic conditions to neurodegenerative disorders. Thus, arginase is a potential biomarker of disease progression and severity and has recently been the subject of research studies regarding the therapeutic efficacy of arginase inhibitors. This review gives a comprehensive overview of the pathophysiological role of arginase and the current state of development of arginase inhibitors, discussing the potential of arginase as a molecular imaging biomarker and stimulating the development of novel specific and high-affinity arginase imaging probes.
To increase the therapeutic index of chemotherapeutic drugs, prodrugs have been investigated as anticancer agents, as they may present fewer cytotoxic side effects than conventional cytotoxic drugs, while therapeutic efficacy is maintained or even increased. Extracellular beta-glucuronidase (beta-GUS) in the tumors has been investigated as a target enzyme for prodrug therapy, as it can convert nontoxic prodrugs into cytostatic drugs. To optimize beta-GUS-based prodrug therapies, PET imaging could be a useful tool by providing information regarding the localization and quantification of beta-GUS. Here, we describe our first PET tracer for extracellular beta-GUS, [(18)F]-FEAnGA, which consists of a 2-[(18)F]fluoroethylamine ([(18)F]-FEA) group bound to a glucuronic acid via a self-immolative nitrophenyl spacer. [(18)F]-FEAnGA was synthesized by alkylation of its imidazole carbamate precursor with [(18)F]-FEA, followed by deprotection of the sugar moiety with NaOH in 10-20% overall radiochemical yield. [(18)F]-FEAnGA is about 10-fold more hydrophilic than the cleavage product [(18)F]-FEA, and it is stable in PBS and rat plasma for at least 3 h. In the presence of either Escherichia coli beta-GUS or bovine liver beta-GUS, in vitro cleavage of [(18)F]-FEAnGA with complete release of [(18)F]-FEA was observed within 30 min. C6 glioma cells incubated with the tracer and Escherichia coli beta-GUS or bovine liver beta-GUS showed a 4- and 1.5-fold higher uptake of radioactivity, respectively, as compared to control C6 cells without beta-GUS. Incubation of CT26 murine colon adenocarcinoma cells or the genetically engineered CT26mbetaGUS cells, which expressed membrane-anchored GUS on the outer cell membrane, with the tracer, resulted in a 3-fold higher uptake into GUS-expressing cells as compared to control cells. In a preliminary microPET study in mice bearing both CT26 and CT26mbetaGUS tumors, [(18)F]-FEAnGA exhibited a 2-fold higher retention of radioactivity in the tumor expressing beta-GUS than in the control tumor. [(18)F]-FEA did not show any difference in tracer uptake between tumors. These results suggest that [(18)F]-FEAnGA may be a suitable PET tracer for evaluation of beta-GUS activity, since it is specifically cleaved by beta-GUS and the released [(18)F]-FEA remains attached to targeted cells.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.