The impact of advances in nanotechnology is particularly relevant in biodiagnostics, where nanoparticle-based assays have been developed for specific detection of bioanalytes of clinical interest. Gold nanoparticles show easily tuned physical properties, including unique optical properties, robustness, and high surface areas, making them ideal candidates for developing biomarker platforms. Modulation of these physicochemical properties can be easily achieved by adequate synthetic strategies and give gold nanoparticles advantages over conventional detection methods currently used in clinical diagnostics. The surface of gold nanoparticles can be tailored by ligand functionalization to selectively bind biomarkers. Thiol-linking of DNA and chemical functionalization of gold nanoparticles for specific protein/antibody binding are the most common approaches. Simple and inexpensive methods based on these bio-nanoprobes were initially applied for detection of specific DNA sequences and are presently being expanded to clinical diagnosis. Figure Colorimetric DNA/RNA detection using salt induced aggregation of AuNP-DNA nanoprobes.
The development of rapid detection assays for malaria diagnostics is an area of intensive research, as the traditional microscopic analysis of blood smears is cumbersome and requires skilled personnel. Here, we describe a simple and sensitive immunoassay that successfully detects malaria antigens in infected blood cultures. This homogeneous assay is based on the fluorescence quenching of cyanine 3B (Cy3B)-labeled recombinant Plasmodium falciparum heat shock protein 70 (PfHsp70) upon binding to gold nanoparticles (AuNPs) functionalized with an anti-Hsp70 monoclonal antibody. Upon competition with the free antigen, the Cy3B-labeled recombinant PfHsp70 is released to solution resulting in an increase of fluorescence intensity. Two types of AuNP-antibody conjugates were used as probes, one obtained by electrostatic adsorption of the antibody on AuNPs surface and the other by covalent bonding using protein cross-linking agents. In comparison with cross-linked antibodies, electrostatic adsorption of the antibodies to the AuNPs surfaces generated conjugates with increased activity and linearity of response, within a range of antigen concentration from 8.2 to 23.8 μg.mL(-1). The estimated LOD for the assay is 2.4 μg.mL(-1) and the LOQ is 7.3 μg.mL(-1). The fluorescence immunoassay was successfully applied to the detection of antigen in malaria-infected human blood cultures at a 3% parasitemia level, and is assumed to detect parasite densities as low as 1,000 parasites.μL(-1).
Bionanoconjugates were created with cytochrome c from horse heart (HCc) or yeast (YCc) and citrate-stabilized gold nanoparticles (AuNPs). Evidence for the formation of stable HCc-AuNP and YCc-AuNP bionanoconjugates came from a 5 nm red-shift of the surface plasmon resonance band of the AuNPs, increase of the -potential, and direct visualization by atomic force microscopy. Langmuir isotherm fittings of -potential data indicated that higher enthalpy changes are involved in the formation of the HCc-AuNP than in YCc-AuNP. UV-vis and circular dichroism studies of pH-induced aggregation of the bionanoconjugates revealed distinct protonation patterns with an aggregation pH of 8.8 and 6.2 for YCc-AuNP and HCc-AuNP, respectively. No appreciable changes were observed in the secondary structure of HCc in HCc-AuNP. In contrast, YCc in YCc-AuNP presented a decrease in R-helix content upon AuNP binding and an increase in -sheet content upon pH-induced aggregation. Data discussion is based on the distinct binding modes of both proteins to the AuNPs via a covalent bond (Cys 102) for YCc and via electrostatic interaction for HCc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.