Fresh apples are typically stored for up to 1 year commercially; different apple varieties require different storage temperatures to maintain their quality characteristics. There is sparse information available about Listeria monocytogenes survival on fresh apples under various storage temperatures. The objective of this study was to comprehensively evaluate the effect of storage temperature on apple fruit decay and L. monocytogenes survival. Unwaxed apple fruits of selected varieties (Fuji and Granny Smith) were dip inoculated in a three-strain L. monocytogenes cocktail to establish ∼3.5 and 6.0 Log10 CFU/apple. Twenty-four hours post-inoculation, apples were subjected to 1, 4, 10, or 22°C storage for up to 3 months. Apples under the different storage treatments were sampled at 1-, 4-, 7- and 14-day for short-term storage under all four tested temperatures, and 2-, 4-, 8-, and 12-week for long-term storage at 1, 4, and 10°C. A set of uninoculated and unwaxed apples were simultaneously subjected to the previously mentioned storage temperatures and sampled biweekly for their total bacterial count (TPC) and yeasts/molds (Y/M) count. During the 2-week short-term storage, L. monocytogenes population on organic Granny Smith apples stored at 1, 4, or 10°C was reduced by 0.2–0.3 Log. When apples were stored at 22°C, there was a 0.5–1.2 Log10 CFU/apple reduction 14-day post storage dependent on the initial inoculation level. During the 12-week cold storage under 1, 4, and 10°C, L. monocytogenes count on organic Granny Smith apples decreased by 0.5–1.5 Log10 CFU/apple for both inoculation levels. L. monocytogenes had similar survival pattern on conventional Granny Smith and Fuji apples with 0.8–2.0 Log10 CFU/apple reduction over a 3-month cold storage period. Interestingly, both TPC and Y/M count were stable regardless of apple variety or cultivation practice during the 12-week storage at all tested temperatures. In summary, while L. monocytogenes did not proliferate on apple surfaces during 12 weeks of refrigerated storage, only a limited reduction of L. monocytogenes was observed in this study. Therefore, the apple industry cannot rely on cold storage alone to control this pathogen. Additional interventions are needed to eradicate Listeria on fresh apples during long-term cold storage.
'Soggy breakdown' (SB) is an internal flesh disorder of 'Honeycrisp' apple (Malus × domestica Borkh.) fruit that occurs during low temperature storage. The disorder is a chilling injury (CI) in which visible symptoms typically appear after several weeks of storage, but information about the underlying metabolism associated with its induction and development is lacking. The metabolic profile of flesh tissue from wholly healthy fruit and brown and healthy tissues from fruit with SB was characterized using gas chromatography-mass spectrometry (GC-MS) and liquid chromatograph-mass spectrometry (LC-MS). Partial least squares discriminant analysis (PLS-DA) and correlation networks revealed correlation among ester volatile compounds by composition and differences in phytosterol, phenolic and putative triacylglycerides (TAGs) metabolism among the tissues. anova-simultaneous component analysis (ASCA) was used to test the significance of metabolic changes linked with tissue health status. ASCA-significant components included antioxidant compounds, TAGs, and phytosterol conjugates. Relative to entirely healthy tissues, elevated metabolite levels in symptomatic tissue included γ-amino butyric acid, glycerol, sitosteryl (6'-O-palmitoyl) β-d-glucoside and sitosteryl (6'-O-stearate) β-d-glucoside, and TAGs containing combinations of 16:0, 18:3, 18:2 and 18:1 fatty acids. Reduced metabolite levels in SB tissue included 5-caffeoyl quinate, β-carotene, catechin, epicatechin, α-tocopherol, violaxanthin and sitosteryl β-d glucoside. Pathway analysis indicated aspects of primary metabolism differed according to tissue condition, although differences in metabolites involved were more subtle than those of some secondary metabolites. The results implicate oxidative stress and membrane disruption processes in SB development and constitute a diagnostic metabolic profile for the disorder.
Background: 'Honeycrisp' is an apple cultivar that is susceptible to soft scald, a chilling injury expressed as necrotic patches on the peel. Improved understanding of metabolism associated with the disorder would improve our understanding of soft scald and contribute to developing more effective management strategies for apple storage. It was expected that specific gene expression and specific metabolite levels in the peel would be linked with soft scald risk at harvest and/or specific time points during cold storage. Results: Fruit from nine 'Honeycrisp' apple orchards that would eventually develop different incidences of soft scald between 4 and 8 weeks of cold air storage were used to contrast and determine differential transcriptomic and metabolomic changes during storage. Untargeted metabolic profiling revealed changes in a number of distinct pathways preceding and concurrent with soft scald symptom development, including elevated γ-aminobutryic acid (GABA), 1-hexanol, acylated steryl glycosides, and free p-coumaryl acyl esters. At harvest, levels of sesquiterpenoid and triterpenoid acyl esters were relatively higher in peel of fruit that did not later develop the disorder. RNA-seq driven gene expression profiling highlighted possible involvement of genes and associated metabolic processes with soft scald development. These included elevated expression of genes involved in lipid peroxidation and phenolic metabolism in fruit with soft scald, and isoprenoid/brassinosteroid metabolism in fruit that did not develop soft scald. Expression of other stress-related genes in fruit that developed soft scald included chlorophyll catabolism, cell wall loosening, and lipid transport while superoxide dismutases were up-regulated in fruit that did not develop the disorder. Conclusions: This study delineates the sequential transcriptomic and metabolomic changes preceding soft scald symptom development. Changes were differential depending on susceptibility of fruit to the disorder and could be attributed to key stress related and mediating pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.