SummaryChronic rejection of solid organ allografts remains the major cause of transplant failure. Donor-derived tissue-resident lymphocytes are transferred to the recipient during transplantation, but their impact on alloimmunity is unknown. Using mouse cardiac transplant models, we show that graft-versus-host recognition by passenger donor CD4 T cells markedly augments recipient cellular and humoral alloimmunity, resulting in more severe allograft vasculopathy and early graft failure. This augmentation is enhanced when donors were pre-sensitized to the recipient, is dependent upon avoidance of host NK cell recognition, and is partly due to provision of cognate help for allo-specific B cells from donor CD4 T cells recognizing B cell MHC class II in a peptide-degenerate manner. Passenger donor lymphocytes may therefore influence recipient alloimmune responses and represent a therapeutic target in solid organ transplantation.
Adaptive CD8 T-cell immunity is the principal arm of the cellular alloimmune response, but its development requires help. This can be provided by CD4 T cells that recognize alloantigen "indirectly," as self-restricted allopeptide, but this process remains unexplained, because the target epitopes for CD4 and CD8 T-cell recognition are "unlinked" on different cells (recipient and donor antigen presenting cells (APCs), respectively). Here, we test the hypothesis that the presentation of intact and processed MHC class I alloantigen by recipient dendritic cells (DCs) (the "semidirect" pathway) allows linked help to be delivered by indirect-pathway CD4 T cells for generating destructive cytotoxic CD8 T-cell alloresponses. We show that CD8 T-cellmediated rejection of murine heart allografts that lack hematopoietic APCs requires host secondary lymphoid tissue (SLT). SLT is necessary because within it, recipient dendritic cells can acquire MHC from graft parenchymal cells and simultaneously present it as intact protein to alloreactive CD8 T cells and as processed peptide alloantigen for recognition by indirect-pathway CD4 T cells. This enables delivery of essential help for generating cytotoxic CD8 T-cell responses that cause rapid allograft rejection. In demonstrating the functional relevance of the semidirect pathway to transplant rejection, our findings provide a solution to a long-standing conundrum as to why SLT is required for CD8 T-cell allorecognition of graft parenchymal cells and suggest a mechanism by which indirect-pathway CD4 T cells provide help for generating effector cytotoxic CD8 T-cell alloresponses at late time points after transplantation.semidirect pathway | semidirect allorecognition | CD8 cytotoxicity | allorecognition | alloimmunity
SummaryMHC alloantigen is recognized by two pathways: “directly,” intact on donor cells, or “indirectly,” as self-restricted allopeptide. The duration of each pathway, and its relative contribution to allograft vasculopathy, remain unclear. Using a murine model of chronic allograft rejection, we report that direct-pathway CD4 T cell alloresponses, as well as indirect-pathway responses against MHC class II alloantigen, are curtailed by rapid elimination of donor hematopoietic antigen-presenting cells. In contrast, persistent presentation of epitope resulted in continual division and less-profound contraction of the class I allopeptide-specific CD4 T cell population, with approximately 10,000-fold more cells persisting than following acute allograft rejection. This expanded population nevertheless displayed sub-optimal anamnestic responses and was unable to provide co-stimulation-independent help for generating alloantibody. Indirect-pathway CD4 T cell responses are heterogeneous. Appreciation that responses against particular alloantigens dominate at late time points will likely inform development of strategies aimed at improving transplant outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.