A possible contamination with impurities or material weak points generated in cell production of lithium-ion batteries increases the risk of spontaneous internal short circuits (ISC). An ISC can lead to a sudden thermal runaway (TR) of the cell, thereby making these faults especially dangerous. Evaluation regarding the criticality of an ISC, the development of detection methods for timely fault warning and possible protection concepts require a realistic failure replication for general validation. Various trigger methods are currently discussed to reproduce these ISC failure cases, but without considering a valid basis for the practice-relevant particle properties. In order to provide such a basis for the evaluation and further development of trigger methods, in this paper, the possibilities of detecting impurity particles in production were reviewed and real particles from pouch cells of an established cell manufacturer were analysed. The results indicate that several metallic particles with a significant size up to 1 mm × 1.7 mm could be found between the cell layers. This evidence shows that contamination with impurity particles cannot be completely prevented in cell production, as a result of which particle-induced ISC must be expected and the need for an application-oriented triggering method currently exists. The cause of TR events in the field often cannot be identified. However, it is noticeable that such faults often occur during the charging process. A new interesting hypothesis for this so-far unexplained phenomenon is presented here. Based on all findings, the current trigger methods for replicating an external particle-induced ISC were evaluated in significant detail and specific improvements are identified. Here, it is shown that all current trigger methods for ISC replication exhibit weaknesses regarding reproducibility, which results mainly from the scattering random ISC contact resistance.
In 2011, the concept of Industry 4.0 was introduced and later adopted by the German government, paving the way for a new industrial revolution in Germany. The high significance of this topic is reflected by the large number of corresponding publications. Additionally, the regional focus of research is widespread on a global level and often differs even at a national level. This paper generates transparency regarding the adoption of the concept of Industry 4.0 by analyzing the locations of main contributors within the research field on an international, European, and German-national level. Further, it examines the regionally different foci concerning the concept of Industry 4.0. Having identified four main aspects linked to Industry 4.0 within a pre-study, a quantitative literature research was conducted based on over 800 published papers. The results were further visualized with QGIS. Looking at the results, it can be concluded that the German research community is virtually the only user of the term Industry 4.0, while other institutions seem to link their research to other related concepts. On a German level, the majority of the analyzed studies originate from Southern and Western Germany. North Rhine-Westphalia and the Aachen/Jülich region, in particular, represent main contributors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.