Extrusion bioprinting based on the development of novel bioinks offers the possibility of manufacturing clinically useful tools for wound management. In this study, we show the rheological properties and printability outcomes of two advanced dressings based on platelet-rich plasma (PRP) and platelet-poor plasma (PPP) blended with alginate and loaded with dermal fibroblasts. Measurements taken at 1 h, 4 days, and 18 days showed that both the PRP- and PPP-based dressings retain plasma and platelet proteins, which led to the upregulation of angiogenic and immunomodulatory proteins by embedded fibroblasts (e.g., an up to 69-fold increase in vascular endothelial growth factor (VEGF), an up to 188-fold increase in monocyte chemotactic protein 1 (MCP-1), and an up to 456-fold increase in hepatocyte growth factor (HGF) 18 days after printing). Conditioned media harvested from both PRP and PPP constructs stimulated the proliferation of human umbilical vein endothelial cells (HUVECs), whereas only those from PRP dressings stimulated HUVEC migration, which correlated with the VEGF/MCP-1 and VEGF/HGF ratios. Similarly, the advanced dressings increased the level of interleukin-8 and led to a four-fold change in the level of extracellular matrix protein 1. These findings suggest that careful selection of plasma formulations to fabricate wound dressings can enable regulation of the molecular composition of the microenvironment, as well as paracrine interactions, thereby improving the clinical potential of dressings and providing the possibility to tailor each composition to specific wound types and healing stages.
Objective: Three-dimensional printing has become a leading manufacturing technique in healthcare in recent years. Doubts in published studies regarding the methodological rigor and cost-effectiveness and stricter regulations have stopped the transfer of this technology in many healthcare organizations. The aim of this study was the evaluation and implementation of a 3D printing technology service in a radiology department. Methods: This work describes a methodology to implement a 3D printing service in a radiology department of a Spanish public hospital, considering leadership, training, workflow, clinical integration, quality processes and usability. Results: The results correspond to a 6-year period, during which we performed up to 352 cases, requested by 85 different clinicians. The training, quality control and processes required for the scaled implementation of an in-house 3D printing service are also reported. Conclusions: Despite the maturity of the technology and its impact on the clinic, it is necessary to establish new workflows to correctly implement them into the strategy of the health organization, adjusting it to the needs of clinicians and to their specific resources. Significance: This work allows hospitals to bridge the gap between research and 3D printing, setting up its transfer to clinical practice and using implementation methodology for decision support.
Objective: The aim was to theoretically and experimentally investigate recovery in SPECT images with objects of different shapes. Furthermore, the accuracy of volume estimation by thresholding was studied for those shapes. Approach: Nine spheres, nine oblate spheroids, and nine prolate spheroids phantom inserts were used, of which the six smaller spheres were part of the NEMA IEC body phantom and the rest of the inserts were 3D-printed. The inserts were filled with 99mTc and 177Lu. When filled with 99mTc, SPECT images were acquired in a Siemens Symbia Intevo Bold gamma camera and when filled with 177Lu in a General Electric NM/CT 870 DR gamma camera. The signal rate per activity (SRPA) was determined for all inserts and represented as a function of the volume-to-surface ratio and of the volume-equivalent radius using VOIs defined according to the sphere dimensions and VOIs defined using thresholding. Experimental values were compared with theoretical curves obtained analytically (spheres) or numerically (spheroids), starting from the convolution of a source distribution with a point-spread function. Validation of the activity estimation strategy was performed using four 3D-printed ellipsoids. Lastly, the threshold values necessary to determine the volume of each insert were obtained. Main results: Results showed that SRPA values for the oblate spheroids diverted from the other inserts, when SRPA were represented as a function of the volume-equivalent radius. However, SRPA values for all inserts followed a similar behaviour when represented as a function of the volume-to-surface ratio. Results for ellipsoids were in agreement with those results. For the three types of inserts the volume could be accurately estimated using a threshold method for volumes larger than 25 mL. Significance: Determination of SRPA independently of lesion or organ shape should decrease uncertainties in estimated activities and thereby, in the long term, be beneficial to patient care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.