The phenol-degrading solvent-tolerant bacterium Pseudomonas putida P8 changed its cell shape when grown in the presence of aromatic compounds such as phenol and 4-chlorophenol. The sizes of cells that had been growing after addition of different concentrations of the toxic compounds were measured using a coulter counter that calculates the sizes of the rod-shaped bacteria to diameters of virtual spheres. The cells showed an increase in the diameter depending on the toxic effects of the applied concentrations of both solvents. The same effect was measured for an alkanol degrading bacterium, Enterobacter sp. VKGH12, in the presence of n-butanol. The reaction of the cells to different concentrations of n-butanol was examined by scanning electron microscopy. With this technique it could be shown that the size of the bacteria increased with increasing concentrations of n-butanol. These changes in cell size were dependent on the cellular activity and occurred only after addition of non-lethal concentrations. In the presence of lethal concentrations that completely inhibited cell growth, the cell sizes were similar to those of cells without intoxication. Taking into account the mathematical formula for spherical and cylindrical diameter and surface, respectively, the cells reacted to the presence of organic solvents by decreasing the ratio between surface and volume of the cells and therefore reducing their relative surfaces. As the cell surface and especially the cytoplasmic membrane are the major targets for the toxic effects of membrane-active compounds, this reduction of the relative surface represents an adaptive response to the presence of such compounds.
There is little information about environmental contamination with antibiotic resistance genes (ARG) in Sub-Saharan Africa, home to about 1 billion people. In this study we measured the abundance of three genes (sul1, sul2, and intI1) used as indicators of environmental contamination with ARGs in the sediments of four urban wetlands in southwestern Nigeria by qPCR. In addition, we characterised the variable regions of class 1 integrons in sulfamethoxazole/trimethoprim (SMX/TRI)-resistant bacteria isolated from the wetlands by PCR and DNA sequencing. The indicator ARGs were present in all wetlands with mean absolute copy numbers/gram of sediment ranging between 4.7x10 6 and 1.2x10 8 for sul1, 1.1x10 7 and 1x10 8 for sul2, and 5.3x10 5 and 1.9x10 7 for intI1. The relative abundances (ARG/16S rRNA copy number) ranged from about 10 −3 to 10 −1. These levels of ARG contamination were similar to those previously reported for polluted environments in other parts of the world. The integrase genes intI1 and intI2 were detected in 72% and 11.4% SMX/TRIresistant isolates, respectively. Five different cassette array types (dfrA7; aadA2; aadA1| dfrA1; acc(6')lb-cr|arr3|dfrA27; arr3|acc(6')lb-cr|dfrA27) were detected among 34 (59.6%) intI1-positive isolates. No gene cassettes were found in the nine intI2-positive isolates. These results show that African urban ecosystems impacted by anthropogenic activities are reservoirs of bacteria harbouring transferable ARG.
There are increasing concerns about possible dissemination of clinically relevant antibiotic resistance genes, including genes encoding for carbapenemases in the environment. However, little is known about environmental distribution of antibiotic resistance in Africa. In this study, four polluted urban wetlands in Nigeria were investigated as potential reservoirs of carbapenem-resistant bacteria (CRB). CRB were isolated from the wetlands, characterized by Blue-Carba test, MIC determinations and whole genome sequencing (WGS). Nine of 65 bacterial isolates identified as members of the Pseudomonas putida group (P. plecoglossicida and P. guariconensis, respectively) harboured the metallo-beta-lactamase gene blaVIM-5. WGS revealed the blaVIM-5 in three novel Tn402-like class 1 integron structures containing the cassette arrays aadB|blaVIM-5|blaPSE-1, aadB|blaVIM-5|aadB|blaPSE-1, and blaVIM-5|aadB|tnpA|blaPSE-1|smr2|tnpA, respectively. Strains carrying the aadB|blaVIM-5|blaPSE-1 cassette also carried an identical integron without blaVIM-5. In addition, the strains harboured another Tn402-like class 1 integron carrying bcr2, several multidrug resistance efflux pumps, and at least one of ampC, aph(3”)-lb, aph(6)-ld, tetB, tetC, tetG, floR, and macAB. This is the first report of a carbapenemase gene in bacteria from environmental sources in Nigeria and the first report of blaVIM-5 in environmental bacteria isolates. This result underscores the role of the Nigerian environment as reservoir of bacteria carrying clinically relevant antibiotic resistance genes.
The physiology of the response in the methanotrophic bacterium Methylococcus capsulatus Bath towards thermal and solvent stress was studied. A systematic investigation of the toxic effects of organic compounds (chlorinated phenols and alkanols) on the growth of this bacterium was carried out. The sensitivity to the tested alkanols correlated with their chain length and hydrophobicity; methanol was shown to be an exception to which the cells showed a very high tolerance. This can be explained by the adaptation of these bacteria to growth on C1 compounds. On the other hand, M. capsulatus Bath was very sensitive towards the tested chlorinated phenols. The high toxic effect of phenolic compounds on methanotrophic bacteria might be explained by the occurrence of toxic reactive oxygen species. In addition, a physiological proof of the presence of cis-trans isomerization as a membrane-adaptive response mechanism in M. capsulatus was provided. This is the first report on physiological evidence for the presence of the unique postsynthetic membrane-adaptive response mechanism of the cis-trans isomerization of unsaturated fatty acids in a bacterium that does not belong to the genera Pseudomonas and Vibrio where this mechanism was already reported and described extensively.
Here, we report the draft genome sequence of Magnetospirillum sp. 15-1. This strain was isolated from a planted fixed-bed reactor based on its ability to degrade toluene under anaerobic conditions. The genome assembly consists of 5.4 Mb in 28 contigs and 5,095 coding sequences containing the genes involved in anaerobic toluene degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.