Lipopeptides are microbial surface active compounds produced by a wide variety of bacteria, fungi, and yeast. They are characterized by high structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface, respectively. Surfactin, iturin, and fengycin of Bacillus subtilis are among the most popular lipopeptides. Lipopepetides can be applied in diverse domains as food and cosmetic industries for their emulsification/de-emulsification capacity, dispersing, foaming, moisturizing, and dispersing properties. Also, they are qualified as viscosity reducers, hydrocarbon solubilizing and mobilizing agents, and metal sequestering candidates for application in environment and bioremediation. Moreover, their ability to form pores and destabilize biological membrane permits their use as antimicrobial, hemolytic, antiviral, antitumor, and insecticide agents. Furthermore, lipopeptides can act at the surface and can modulate enzymes activity permitting the enhancement of the activity of certain enzymes ameliorating microbial process or the inhibition of certain other enzymes permitting their use as antifungal agents. This article will present a detailed classification of lipopeptides biosurfactant along with their producing strain and biological activities and will discuss their functional properties and related applications.
During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size). Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37°C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.