The absence of the queen in a beehive is a very strong indicator of the need for beekeeper intervention. Manually searching for the queen is an arduous recurrent task for beekeepers that disrupts the normal life cycle of the beehive and can be a source of stress for bees. Sound is an indicator for signalling different states of the beehive, including the absence of the queen bee. In this work, we apply machine learning methods to automatically recognise different states in a beehive using audio as input. We investigate both support vector machines and convolutional neural networks for beehive state recognition, using audio data of beehives collected from the NU-Hive project. Results indicate the potential of machine learning methods as well as the challenges of generalizing the system to new hives.
Acoustic Scene Classification (ASC) and Sound Event Detection (SED) are two separate tasks in the field of computational sound scene analysis. In this work, we present a new dataset with both sound scene and sound event labels and use this to demonstrate a novel method for jointly classifying sound scenes and recognizing sound events. We show that by taking a joint approach, learning is more efficient and whilst improvements are still needed for sound event detection, SED results are robust in a dataset where the sample distribution is skewed towards sound scenes.
The annual global production of chickens exceeds 25 billion birds, which are often housed in very large groups, numbering thousands. Distress calling triggered by various sources of stress has been suggested as an ‘iceberg indicator’ of chicken welfare. However, to date, the identification of distress calls largely relies on manual annotation, which is very labour-intensive and time-consuming. Thus, a novel convolutional neural network-based model, light-VGG11, was developed to automatically identify chicken distress calls using recordings (3363 distress calls and 1973 natural barn sounds) collected on an intensive farm. The light-VGG11 was modified from VGG11 with significantly fewer parameters (9.3 million versus 128 million) and 55.88% faster detection speed while displaying comparable performance, i.e. precision (94.58%), recall (94.89%), F1-score (94.73%) and accuracy (95.07%), therefore more useful for model deployment in practice. To additionally improve light-VGG11's performance, we investigated the impacts of different data augmentation techniques (i.e. time masking, frequency masking, mixed spectrograms of the same class and Gaussian noise) and found that they could improve distress calls detection by up to 1.52%. Our distress call detection demonstration on continuous audio recordings, shows the potential for developing technologies to monitor the output of this call type in large, commercial chicken flocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.