This paper reports, for the first time, the concentrations of selected phthalates in drinking water consumed in Portugal. The use of bottled water in Portugal has increased in recent years. The main material for bottles is polyethylene terephthalate (PET). Its plasticizer components can contaminate water by leaching, and several scientific studies have evidenced potential health risks of phthalates to humans of all ages. With water being one of the most essential elements to human health and because it is consumed by ingestion, the evaluation of drinking water quality, with respect to phthalate contents, is important. This study tested seven commercial brands of bottled water consumed in Portugal, six PET and one glass (the most consumed) bottled water. Furthermore, tap water from Lisbon and three small neighbor cities was analyzed. Phthalates (di-n-butyl phthalate ester (DnBP), bis(2-ethylhexyl) phthalate ester (DEHP), and di-i-butyl phthalate ester (DIBP)) in water samples were quantified (PET and glass) by means of direct immersion solid-phase microextraction and ionic liquid gas chromatography associated with flame ionization detection or mass spectrometry due to their high boiling points and water solubility. The method utilized in this study showed a linear range for target phthalates between 0.02 and 6.5 μg L(-1), good precision and low limits of detection that were between 0.01 and 0.06 μg L(-1), and quantitation between 0.04 and 0.19 μg L(-1). Only three phthalates were detected in Portuguese drinking waters: dibutyl (DnBP), diisobutyl (DIBP), and di(ethylhexyl) phthalate (DEHP). Concentrations ranged between 0.06 and 6.5 μg L(-1) for DnBP, between 0.02 and 0.16 μg L(-1) for DEHP, and between 0.1 and 1.89 μg L(-1) for DIBP. The concentration of DEHP was found to be up to five times higher in PET than in glass bottled water. Surprisingly, all the three phthalates were detected in glass bottled water with the amount of DnBP being higher (6.5 μg L(-1)) than in PET bottled water. These concentrations do not represent direct risk to human health. Regarding potable tap water, only DIBP and DEHP were detected. Two of the cities showed concentration of all three phthalates in their water below the limits of detection of the method. All the samples showed phthalate concentrations below 6 μg L(-1), the maximum admissible concentration in water established by the US Environmental Protection Agency. The concentrations measured in Portuguese bottled waters do not represent any risk for adult's health.
Two oxygen-containing monoterpene substrates, menthol or geraniol (25 mg l(-1)), were added to Anethum graveolens hairy root cultures to evaluate the influence of the biotransformation capacity on growth and production of volatile compounds. Growth was assessed by the dissimilation method and by fresh and dry weight measurement. The volatiles were analyzed by GC and GC-MS. The total constitutive volatile component was composed, in more than 50%, by falcarinol (17-52%), apiole (11-24%), palmitic acid (7-16%), linoleic acid (4-9%), myristicin (4-8%) and n-octanal (2-5%). Substrate addition had no negative influence on growth. The relative amount of menthol quickly decreased 48 h after addition, and the biotransformation product menthyl acetate was concomitantly formed. Likewise, the added geraniol quickly decreased over 48 h alongside with the production of the biotransformation products. The added geraniol was biotransformed in 10 new products, the alcohols linalool, alpha-terpineol and citronellol, the aldehydes neral and geranial, the esters citronellyl, neryl and geranyl acetates and linalool and nerol oxides.
The biotransformation capacity of Levisticum officinale W.D.J. Koch hairy root cultures was studied by evaluating the effect of the addition of 25 mg/L menthol or geraniol on morphology, growth, and volatiles production. L. officinale hairy root cultures were maintained for 7 weeks in SH medium, in darkness at 24 degrees C and 80 r.p.m., and the substrates were added 15 days after inoculation. Growth was evaluated by measuring fresh and dry weight and by using the dissimilation method. Volatiles composition was analyzed by GC and GC-MS. Hairy roots morphology and growth were not influenced by substrate addition. No new volatiles were detected after menthol addition and, as was also the case with the control cultures, volatiles of these hairy roots were dominated by (Z)-falcarinol (1-45%), N-octanal (3-8%), palmitic acid (3-10%), and (Z)-ligustilide (2-9%). The addition of geraniol induced the production of six new volatiles: nerol/citronellol/neral (traces-15%), alpha-terpineol (0.2-3%), linalool (0.1-1.2%), and geranyl acetate (traces-2%). The relative amounts of the substrates and some of their biotransformation products decreased during the course of the experiment. Following the addition of beta-glycosidase to the remaining distillation water, analysis of the extracted volatiles showed that lovage hairy roots were able to convert both substrates and their biotransformation products into glycosidic forms. GC:gas chromatography GC-MS:gas chromatography-mass spectrometry SH:Schenk and Hildebrandt (1972) culture medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.