This paper presents a neural network recommender system algorithm for assigning vehicles to routes based on energy and cost criteria. In this work, we applied this new approach to efficiently identify the most cost-effective medium and heavy duty truck (MDHDT) powertrain technology, from a total cost of ownership (TCO) perspective, for given trips. We employ a machine learning based approach to efficiently estimate the energy consumption of various candidate vehicles over given routes, defined as sequences of links (road segments), with little information known about internal dynamics, i.e using high level macroscopic route information. A complete recommendation logic is then developed to allow for real-time optimum assignment for each route, subject to the operational constraints of the fleet. We show how this framework can be used to (1) efficiently provide a single trip recommendation with a top-k vehicles star ranking system, and (2) engage in more general assignment problems where n vehicles need to be deployed over m ≤ n trips. This new assignment system has been deployed and integrated into the POLARIS 1 Transportation System Simulation Tool for use in research conducted by the Department of Energy's Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium [1].
This issue brief explores whether artificial intelligence and AI-related certifications serve as potential pathways to enter the U.S. AI workforce. The authors find that according to U.S. AI occupation job postings data over 2010–2020, there is little demand from employers for AI and AI-related certifications. From this perspective, such certifications appear to present more hype than promise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.